Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439

ANL/MCS-TM-263

OTTER 3.3 Reference Manual

by
William McCune

M athematics and Computer Science Division

Technical Memorandum No. 263

August 2003

This work was supported by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy, under Contract W-31-109-ENG-38.

Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned
by the United States Government and operated by The University of Chicago under the
provisionsof a contract with the Department of Energy.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor The
University of Chicago, nor any of their employees or officers, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulnessof any information, apparatus, product, or processdisclosed, or representsthat its
use would not infringe privately-owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of document authors
expressed herein do not necessarily state or reflect those of the United States Government
or any agency thereof, Argonne National Laboratory, or The University of Chicago.

Availableelectronically at http://www.doe.gov/bridge
Availablefor aprocessing feeto U.S. Dept. of Energy and its contractors, in paper, from:

U.S. Department of Energy
Office of Scientific and Technical Information
PO. Box 62
Oak Ridge, TN 37831-0062
phone: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov

Contents

Abstract

1

Introduction

11 What OTTERISMt. o o o e
1.2 History, New Features,andChanges
13 UsefulBackground

Outline of OTTER'’s Inference Process

Starting OTTER

Syntax

41 CommMENtS o e
4.2 Namesfor Variables, Constants, Functions, and Predicates
4.3 Temsand AtOMS e e
44 LiterdsandClauses.
45 Formulas e
4.6 Infix, Prefix, and Postfix Expressions
4.7 WhitespaCein EXpressions
4.8 Bugsand Other Anomaliesin the Input and Output of Expressions

4.9 Examplesof Operator Declarations.

Commands and the Input File

51 Inputof Options. e
52 InputofListsof Clauses
53 Inputof Listsof Formulas
54 Inputof Listsof Weight Templates
5,5 TheCommandsl| ex, skol emand!| rpo_nul ti set status

56 OtherCommands

Options

6.1.2 InferenceRules
6.1.3 ResolutionRestrictionFlags
6.1.4 Paramodulation RestrictionFlags
6.1.5 Flagsfor HandlingGeneratedClauses
6.1.6 Demodulationand OrderingFlags
6.1.7 InputFlags
6.1.8 OutputFlags
6.19 IndexingFlags
6.1.10 MiscellaneousFlags
6.2 Parameters.
6.21 MonitoringProgress
6.2.2 PlacingLimitsontheSearch
6.2.3 Limitson Propertiesof GeneratedClauses.
6.2.4 IndexingParameters
6.25 MiscellaneousParameters
7 Demodulation
8 Ordering and Dynamic Demodulation
81 AdHocOrdering
811 TermOrdering(AdHoC)
8.1.2 Orienting Equalities(AdHoc)
8.1.3 Determining Dynamic Demodulators(AdHoc)
8.1.4 Lex-dependent Demodulation(AdHoc)
82 LRPO e
821 TermOrdering(LRPO) v v v i et e
8.2.2 Orienting Equalities(LRPO) o o o
8.2.3 Determining Dynamic Demodulators(LRPO)
8.2.4 LRPO-dependent Demodulation (LRPO)
8.3 Knuth-Bendix Completion

9 Evaluable Functions and Predicates§SUM $LT, ...)

9.1 Using More Natural Expressionsfor Evaluation

26

29
29
29
30

31
32
32
32
32
32
33

34

9.2 EvauationExamples

10 Weighting

10.1 WeighingClausesand Literdls

10.2 Weighing Atomsand Term

1

10.3 Containment Weight Templates.

11 Answer Literals

12 The Passive List

13 Clause Attributes

14 The Hints Strategy

14.1 Hints(theGenera Version)

142 Hint2 (theFastVersion) e

14.3 Labd AttributesonHints

14.4 Generating HintsfromProofs.

15 Interaction during the Search
16 Output and Exit Codes

17 Controlling Memory

18 Autonomous Mode

19 Fringe Features

19.1 Ancestor Subsumption .

19.2 TheHotList. e,

19.3 Sequent NotationforClauses

19.4 Conditional Demodulation

19.5 Debugging Searchesand Demodulation

19.6 Specia Unary FunctionDemodulation

19.7 Thelnvisible Argument .
19.8 Floating-Point Operations

40
40
40
M

42

42

42

43
43
45

45

46

47

48

50

19.9 Foreign EvaluableFunctions

19.10The Inference Rule gL for CubicCurves

19.11Linked UR-Resolution

19.12Splitting

19.12.1 Splitting on Ground Clauses

19.122SplittingON AtOMS
19.123Moreon Splitting

20 Soundness and Completeness

20.1 SOUNANESS e
20.2 Completeness

21 Limits, Abnormal Ends, and Fixes

22 Obtaining and Installing OTTER

References

Vi

61
61
61

62

63

63

OTTER 3.3 Reference Manual

William McCune

Abstract

OTTER is a resolution-style theorem-proving program for first-order logic with
equality. OTTER includes the inference rules binary resolution, hyperresolution, UR-
resolution, and binary paramodulation. Some of its other abilities and features are con-
version from first-order formulasto clauses, forward and back subsumption, factoring,
weighting, answer literals, term ordering, forward and back demodulation, evaluable
functions and predicates, Knuth-Bendix completion, and the hints strategy. OTTER is
coded in ANSI C, isfree, and is portable to many different kinds of computer.

1 Introduction

OTTER (Organized Techniques for Theorem-proving and Effective Research) is a
resolution-style theorem prover, similar in scope and purpose to the AURA [24] and
LMA/1TP [15] theorem provers, which are also associated with Argonne. OTTER applies
to statements written in first-order logic with equality. The primary design considerations
have been performance, portability, and extensibility. The programming language ANSI C
isused.

OTTER features the inference rules binary resolution, hyperresolution, UR-resolution,
and binary paramodulation. These inference rules take a small set of clauses and infer a
clause; if the inferred clause is new, interesting, and useful, it is stored and may become
available for subsequent inferences. Other features of OTTER are the following.

e Statements of the problem may be input either with first-order formulas or with
clauses (a clauseisadisunctionwith implicit universal quantifiers and no existential
quantifiers). If first-order formulas are input, OTTER trandates them to clauses.

¢ Forward demodulation rewrites and simplifies newly inferred clauses with a set of
equalities, and back demodulation uses a newly inferred equality (which has been
added to the set of demodulators) to rewrite all existing clauses.

e Forward subsumption deletes an inferred clause if it is subsumed by any existing
clause, and back subsumption deletes all clauses that are subsumed by an inferred
clause.

e A variant of the Knuth-Bendix method can search for a complete set of reductions
and help with proof searches.

¢ Weight functions and lexical ordering decide the value of clauses and terms.
e Answer literals can give information about the proofs that are found. See Sec. 11.

e Evaluable functions and predicates build in integer arithmetic, Boolean operations,
and lexical comparisons and enable users to “program” aspects of deduction pro-
cesses. See Sec. 9.

¢ Proofs can be presented in a very detailed form, called proof objects, which can
be used by other programs, for example, to check or to trandate the proofs. See
Sec. 20.1.

e The hints strategy can be used to provide heuristic guidance to the search. To apply
thisfeature, the user givesaset of hint clauses, and clauses similar to the hint clauses
are emphasized during the search. See Sec. 14.

e OTTER'S input is compatible, for the most part, with a complementary program
MACE 2.0 [17], which looks for finite models of first-order statements. Given a
conjecture, OTTER can search for a proof, and MACE can look for a counterexam-
ple, usualy from the same input file. MACE 2.0 isincluded in the standard OTTER
3.3 distribution packages.

Although OTTER has an autonomous mode, most work with OTTER involvesinteraction
with the user. After encoding a problem into first-order logic or into clauses, the user
usually chooses inference rules, sets options to control the processing of inferred clauses,
and decides which input formulas or clauses are to bein the initial set of support and which
(if any) equalitiesare to be demodulators. If OTTER failsto find a proof, the user may wish
totry againwith differentinitial conditions. In the autonomousmode, the user inputsa set of
clauses and/or formulas, and OTTER does a simple syntactic analysisand decides inference
rules and strategies. The autonomous mode is frequently useful for the first attempt at a
proof.

1.1 WhatOTTER Isn’t

Some of the first applicationsthat come to mind when one hears “ automated theorem prov-
ing” are number theory, calculus, and plane geometry, because these are some of the first
areas in which math studentstry to prove theorems. Unfortunately, OTTER cannot do much
in these areas: interesting number theory problems usually require induction, interesting
calculus and analysis prablems usually require higher-order functions, and the first-order
axiomatizations of geometry are not practical. (Nonetheless, Art Quaife has proved many
interesting theorems in number theory and geometry using OTTER [22, 21].) For practi-
cal theorem proving in inductive theories, see the work of Boyer, Moore, and Kaufmann
[2, 10].

OTTER is aso not targeted toward synthesizing or verifying forma hardware or soft-
ware systems. See [6, 5] for work in those areas.

Summaries of other theorem-proving systems can be found in proceedings of the recent
Conferences on Automated Deduction (CADE) and in coverage of the CADE ATP System
Competition (CASC).

1.2 History, New Features, and Changes

There have been several previous releases of OTTER, starting with version 0.9, which was
distributed at the Sth International Conference on Automated Deduction (CADE-9) in May
1988. Many new features have been added since then, many bugs have been fixed, and (of
course) many bugs have been introduced.

1.3 Useful Background

Thismanual does not contain an introductionto first-order logic or to automated deduction.
We assume that the reader knowsthe basic terminology including term (variable, constant,
complex term), atom, literal, clause, propositional variable, function symbol, predicate
symbol, Skolem constant, Skolem function, formula, conjunctive normal form (CNF), res-
olution, hyperresolution, and paramodulation. See [3, 14, 32] for an introductions and
overviews of automated theorem proving, see [23, 1] for collections of important papers,
see [30] for alist of genera problemsin the field, and see [33, 8, 18] for introductionsand
applicationsthat focus on the use of OTTER.

2 Outline of OTTER’s Inference Process

Once OTTER getsgoing withitsreal work—making inferences and searching for proofs—it
operates on clauses and on clauses only. If the user inputs nonclausal first-order formulas,
OTTER immediately translates them to clauses, by a straightforward procedure involving
negation normal form conversion, Skolemization, quantifier operations, and conjunctive
normal form conversion.

As with its predecessors AURA and LMA/ITP, OTTER’s basic inference mechanism is
the given-clause algorithm, which can be viewed as a simple implementation of the set of
support strategy [31]. OTTER maintainsfour lists of clauses:

usabl e. Thislist contains clausesthat are available to make inferences.

sos. Clausesin list sos (set of support) are not available to make inferences; they are
waiting to participate in the search.

passi ve. These clausesdo not directly participate in the search; they are used only for
forward subsumption and unit conflict. The passivelistisfixed at input and does not
change during the search. See Sec. 12.

denodul at ors. These are equalities that are used as rules to rewrite newly inferred
clauses.

The main loop for inferring and processing clauses and searching for a refutation operates
mainly onthelistsusabl e and sos:

Wi le (sos is not enpty and no refutation has been found)
1. Let given_clause be the ‘'‘best’’ clause in sos;

2. Move given_clause fromsos to usable;
3. Infer and process new cl auses using the inference
rules in effect; each new cl ause nust have the
gi ven_cl ause as one of its parents and nenbers
of usable as its other parents; new clauses
that pass the retention tests are appended to sos;
End of while I oop.

The set of support strategy requires the user to partition the input clauses into two sets:
those with support and those without. For each inference, at least one of the parents must
have support. Retained inferences receive support. In other words, no inferences are made
inwhich all parents are nonsupported input clauses. At input time, OTTER’s list sos isthe
set of supported clauses, and usabl e is the nonsupported clauses. (Once the main loop
has started, usabl e no longer corresponds to nonsupported clauses, because sos clauses
have moved there)) OTTER’s main loop implements the set of support strategy, because no
inferences are made in which al of the parents are from theinitial usabl e list.

The following paragraph tries to answer the frequently asked question “ At a certain
point, OTTER has all of the clauses available to make the inference | want, and one of
the potential parents is selected as the given clause—why doesn’t the program make the
inference?”

OTTER’s main loop eliminates an important kind of redundancy. Suppose one can infer
clause C' from clauses A and B, and supposeboth A and B areinlist sos. If A isseected
as the given clause, it will be moved to usabl e and inferences will be made; but A will
not mate with B to infer C', because B is still in sos. We must wait until B has also been
selected as given clause. Otherwise, we would infer C' twice. (The redundancy would be
much worse with inference rules such as hyperresolution and UR-resolution with which a
clause can have many parents.) In general, al parentsthat participate in an inference must
either have been in theinitial usabl e list or have been selected as given clauses. (Thisis
not true when demodulators are considered as parents.)

The procedure for processing a newly inferred clause new_cl follows; steps marked with
* are optional.

Renunber vari abl es.
Qut put new_cl .
Denpdul ate new _cl (including $ eval uation).
Oient equalities.
Apply unit deletion
Merge identical literals (leftnost copy is kept).
Apply factor-sinplification.
Di scard new cl and exit if too many literals or variables.
Di scard new cl and exit if new.cl is a tautol ogy.
* 10. Discard new cl and exit if new.cl is too ‘heavy’.
* 11. Sort literals.
* 12. Discard new cl and exit if new.cl is subsuned by any cl ause
in usable, sos, or passive (forward subsunption).
13. Integrate new cl and append it to sos.
* 14. Qutput kept clause.
15. If newcl has O literals, a refutation has been found.
16. If newcl has 1 literal, then search usable, sos, and

*
COoONOOR®DNE

4

passive for unit conflict (refutation) with new cl.
* 17. Print the proof if a refutation has been found.
* 18. Try to make new cl into a denodul ator

* 19. Back denpdulate if Step 18 made new cl into a denodul at or

* 20. Discard each clause in usable or sos that is subsuned by
new cl (back subsunption).

* 21. Factor new cl and process factors.

Steps 19-21 are delayed until steps 1-18 have been applied to al clausesinferred from the
active given clause.

3 Starting OTTER

Although OTTER has a primitive interactive feature (Sec. 15), it is essentialy a noninter-
active program. On UNIX-like systems it reads from the standard input and writes to the
standard outpult:

otter < input-file> output-file

No command-line options are accepted; all optionsare given inthe input file.

4 Syntax

OTTER recognizestwo basic types of statement: clauses and formulas. Clauses are simple
digunctions whose variables are implicitly universally quantified. OTTER’s searches for
proofs operate on clauses. Formulas are first-order statements without free variables—all
variablesare explicitly quantified. When formulas are input, OTTER immediately translates
them to clauses.

4.1 Comments

Comments can be placed in the input file by using the symbol % All characters from the
first %on a line to the end of the line are ignored. Comments can occur within terms.
Comments are not echoed to the output file.

4.2 Names for Variables, Constants, Functions, and Predicates

Three kinds of character string, collectively referred to as names, can be used for variables,
constants, function symbols, and predicate symbols:

e Anordinary nameisastring of alphanumerics, $, and _.

e A gspecial nameis a string of charactersintheset *+-/\ " <>="": ?@&! ; # (and
sometimes |).

¢ A quoted nameisany string enclosed in two quotation marks of the same type, either
" or’ . We have no trick for including a quotation mark of the same typein a quoted
name.

(Thereason for separating ordinary and special names hasto do with infix, prefix, and post-
fix operators; see Sec. 4.6.) For completeness, we list here the meanings of the remaining
printable characters.

e . (period) — terminates input expressions.
e % — starts acomment (which ends with the end of theline).

e, ()[1{} (and sometimes|) — are punctuation and grouping symbols.

Variables. Determining whether a simple term is a constant or a variable depends on the
context of the term. If it occurs in a clause, the symbol determines the type: the default
rule is that a simple term is a variable if it starts with u, v, w, x, y, or z. If the flag
prol og_styl e_vari abl es isset,asimpletermisavariableif andonly if it startswith
an upper-case letter or with _. (Therefore, variablesin clauses must be ordinary names.) In
aformula, asimpletermisavariableif and only if it is bound by a quantifier.

Reserved and Built-in Names. Namesthat start with $ are reserved for special purposes,
including evaluable functions and predicates (Sec. 9), answer literals and terms (Sec. 11),
and some internal system names. The name = and any name that starts with eq, EQ, or
Eq, when used as a binary predicate symbol, is recognized as an equality predicate by the
demodulation and paramodulation processes. And some names, when they occur in clauses
or formulas, are recognized as logic symbols.

Overloaded Symbols. The user can use a name for more than one purpose, for example
as a constant and as a 5-ary predicate symbol. When the flag check_arity is set (the
default), the user iswarned about such uses. Some built-in names are also overloaded; for
example, | isused both for digunction and as Prolog-style list punctuation, and although
the symbol - isbuiltin aslogica negation, it can be used for both unary and binary minus
aswell.

4.3 Terms and Atoms

Recall that, when interpreted, terms are evaluated as objects in some domain, and atoms
are evaluated as truth values. Constants and variables are terms. An n-ary function symbol
appliedto n termsisaso aterm. An n-ary predicate symbol applied to » termsis an atom.
A nullary predicate symbol (also referred to as a propositional variable) is also an atom.

The pure way of writing complex terms and atoms is with standard application: the
function or predicate symbol, opening parenthesis, arguments separated by commas, then
closing parenthesis, for example, f (a, b, ¢) and =(f (x, e), x). If al subterms of a
term are written with standard application, the term is in pure prefix form. Whitespace
(spaces, tabs, newlines, and comments) can appear in standard application terms anywhere
except between a function or predicate symbol and its opening parenthesis. If the flag
di spl ay_t er ns isset, OTTER will output terms in pure prefix form.

Infix Equality. Some binary symbols can be written in infix form; the most important is
=. In addition, a negated equality, - (a=b) can be abbreviated a! =b.

List Notation. Prolog-style list notation can be used to write terms that usually represent
lists. Table 1 gives some example terms in list notation and the corresponding pure prefix
form. Of course, listscan contain complex terms, including other lists.

Table 1: List Notation

[] $ni
[x]y] $cons(x,y)
[x,y] $cons(x, $cons(y, $nil))

[a,b,c,d] $cons(a, $cons(b, $cons(c, $cons(d, $nil))))
[a,b,c|x] $cons(a, $cons(b, $cons(c, x)))

4.4 Literals and Clauses

A literal iseither an atom or the negation of an atom. A clause isadigunction of literals.
The built-in symbols for negation and disunction are - and | , respectively. Although
clauses can be written in pure prefix form, with - as a unary symbol and | as a binary
symbol, they are rarely written that way. Instead, they are almost always written in infix
form, without parentheses. For example, the following isa clause in both forms.

Pure prefix: | (-(a),] (=(bl,b2),-(=(cl,c2))))
Infix (abbreviated): -a | bl=b2 | cl!=c2

OTTER accepts both forms. (Clauses are parsed by the general term-parsing mechanism
presented in Sec. 4.6).

45 Formulas

Table 2 liststhe built-in logic symbols for constructing formulas.

Formulas in Pure Prefix Form. Although the practice is rarely done, formulas can
be written in pure prefix form. Quantification is the only tricky part: there is a
special variable-arity symbol, $Quant i fi ed, for quantified formulas. For example,
Vay3dz(P(z,y, 2)|Q(z, z)) isrepresented by

Table 2: Logic Symbols

negation -
disunction |
conjunction &
implication ->
equivaence <>

existential quantification exi st's
universal quantification al |

$Quantified(all, x,y,exists,z,|(P(x,y,2z),Qx,2z))).

Abbreviated Formulas. Formulas are usualy abbreviated in a natural way. The asso-
ciativity and precedence rules for abbreviating formulas and the mechanism for parsing
formulas are presented in Sec. 4.6. Here are some examples.

Standard Usage OTTER syntax (abbreviated)
Ve P(z) all x P(x)
Veydz(P(z,y,z) V Qz, z)) all x y exists z (P(x,y,2z) | QXx,2))

Ve(P(z) AQ(z) A R(x) — S(z)) all x (P(x) & Qx) & R(x) -> S(x))

Note that if a formula has a string of identical quantifiers, all but the first can
be dropped. For example, all x all y all z p(x,y,z) can be shortened to
all xy z p(x,y, z). Inexpressionsinvolving the associative operations & and | ,
extra parentheses can be dropped. Moreover, a default precedence on the logic symbols
allows us to drop more parentheses: <- > has the same precedence as - >, and the rest in
decreasing order are - >, | , &, - . Greater precedence means closer to the root of the term
(i.e., larger scope). For example, the following three strings represent the same formula.

p| -g&r ->-s | t.
(p | (-(a) &r)) ->(-(s) | t).
->(1(p, &(-(a),r)). 1 (-(s),t)).

When in doubt about how a particular string will be parsed, one can simply add additional
parentheses and/or test the string by having OTTER read it and then display it in pure prefix
form. The followinginput file can be used to test the preceding example.

assign(stats_|level, 0).

set (di splay_terns).

formula_list(usable).

p| -q&-> -s|t. % Thi s fornula has nmi ni num whi t espace.
end_of _|ist.

In general, whitespace isrequired around al | and exi st s and to theleft of - ; otherwise,
whitespace around the logic symbols can be removed. See Sec. 4.6 for therules.

4.6 Infix, Prefix, and Postfix Expressions

Many Prolog systems have a feature that allows users to declare that particular function or
predicate symbols are infix, prefix, or postfix and to specify a precedence and associativity
so that parentheses can sometimes be dropped. OTTER has a similar feature. In fact, the
clause and formula parsing routines use the feature. Users who use only the predeclared

logic operators for clauses and formulas and the predeclared infix equality = can skip the
rest of thissection.

Prolog userswho are familiar with the declaration mechanism should note the following
differences between the ordinary Prolog mechanism and OTTER’S.
e The predeclared operators are different. See Table 3.

e OTTER does not treat comma as an operator; in particular, a, b, ¢ cannot be aterm,
asina,b,c -> d, e, f.

e OTTER treats the quantifiersal | and exi st s as special cases, because they don't
seem to fit neatly into the standard Prolog mechanism.

e OTTER requires whitespace in some cases where the Prolog systems do not.

Symbols to be treated in this special way are given a type and a precedence. Either
OTTER predeclares the symbol’s properties, or the user gives OTTER acommand of one of
the following forms.

op(precedence,
op(precedence,

type, synbol).
type, list-of-synbols).

The pr ecedence isan integer i, 0 < ¢ < 1000, and t ype is one of the following:
xfx, xfy, yfx (infix), f x, fy (prefix), xf , yf (postfix). See Table 3 for the commands
corresponding to the predeclared symbols.

Table 3: Predeclared Symbols

op(800, xfy, #).

op(800, xfx, ->). op(700, xfx, @).
op(800, xfx, <->). op(700, xfx, @).
op(790, xfy, |). op(700, xfx, @=).
op(780, xfy, &. op(700, xfx, @=).
op(700, xfx, =). op(500, xfy, +).
op(700, xfx, !=). op(500, xfx, -).
op(700, xfx, <) op(500, fx, +).
op(700, xfx, >) op(500, fx, -).
op(700, xfx, <=

op(700, xfx, >= op(400, xfy, *).
op(700, xfx, ==). op(400, xfx, /).
op(700, xfx, =/=). op(300, xfx, nod)

Given an expression that looks like it might be associated in a number of ways, the
relative precedence of the operators determines, in part, how it is associated. A symbol
with higher precedence is more dominant (closer to the root of the term), and one with
lower precedence binds more tightly. For example, the symbols - >, |, & and - have
decreasing precedence; therefore the expressionp & - g | r -> s isunderstood as

((p &(-a) | r) ->s.

In each of thetypes, f representsthe symbol, and x and y, which represent the expres-
sions to which the symbol applies, specify how terms are associated. Given an expression
involving symbols of the same precedence, the types of the symbol determines, in part, the
association. See Table 4. The following are examples of associdtivity:

Table 4: Symbol Types
xfx infix (binary) don’t associate
xfy infix (binary) associateright
yfx infix (binary) associateleft
fx prefix (unary) don't associate
fy prefix (unary) associate
xf postfix (unary) don’t associate
yX postfix (unary) associate

e If + hastypexfy, then a+b+c+d isunderstoodasa+(b+(c+d)).

e If - > hastype xf x, then a- >b- >c isnot well formed.

o If - hastypefy, then- - -pisunderstoodas-(-(-(p))). (The spaces are
necessary; otherwise, - - - will be parsed as single name.)
e If- hastypef x, then- - - p isnotwell formed.

Caution: The associativity specificationsin the infix symbol declarations say nothing about
thelogical associativity of the operation, for example, whether (a+b) +c isthe same abject
asasa+(b+c) . The specificationsare only about parsing ambiguous expressions. In most
cases, when an operator is xfy or yf x, it is adso logicaly associative, but the logical
associativity is handled separately; it is built-inin the case of thelogic symbols| and & in
OTTER clauses and formulas, and it must be axiomatized in other cases.

Details of the Symbol Declarations. (This paragraph can be skipped by most users.)
The precedence of symbols extends to the precedence of expressionsin the following way.
The precedence of an atomic, parenthesized, or standard application expression is 0. Re-
spective examples are p, (x+y) , and p(a+b, ¢, d) . The precedence of a (well-formed)
nonparenthesized nonatomic expression is the same as the precedence of the root symbol.
For example, a&b has the precedence of &, and a&b| ¢ has the precedence of the greater
symbol. In the type specifications, x represents an expression of lower precedence than the
symbol, and y represents an expression with precedence less than or equal to the symbol.
Consider a+b+c, where + has type xf y; if association is to the |eft, then the second oc-
currence of + does not fit the type, because a+b, which corresponds to x, does not have

10

a lower precedence than +; if association is to the right, then all is well. If we extend
the example, under the declarationsop(700, xfx, =) andop(500, xfy, +),the
expression a+b+c=d+e must beunderstoodas (a+ (b+c))= (d+e).

4.7 Whitespace in Expressions

The reason for separating ordinary names from special names (Sec. 4.2) is so that some
whitespace (spaces, tabs, newline, and comments) can be removed. We can write a+b+c
(instead of having to writea + b + c), because “a+b+c” cannot be a name, that is, it
must be parsed into five names.

Caution. There is a deficiency in OTTER'S parser having to do with whitespace be-
tween a name and opening parenthesis. The rule to use is: Insert some white space if
and only if it is not a standard application. For example, the two pieces of white space
in(a+ (b+c))= (d+e) arerequired, and no white space is alowed after f or g in
f(x,9(x)).

4.8 Bugs and Other Anomalies in the Input and Output of Expressions

e Thesymboal | is either Prolog-stylelist punctuation or part of a special name. With
the built-in declaration of | as infix, theterm [a| b] is ambiguous, with possible
interpretationst; =$cons(a, b) andt; =$cons(| (a, b), $nil). OTTER rec-
ognizesit asthefirst. Theterm ¢, can bewritten[(a| b)] . The bugisthat ¢, will
be output without the parentheses. This is the only case we know in which OTTER
cannot correctly read aterm it has written.

e A term consisting of aunary + or - applied to a nonnegative integer is awaystrans-
lated to a constant.

e Parsing large terms without parentheses, say al+a2+a3+. . . +a1000, can be very
slow if the operator isleft associative (yf x). If one intendsto parse such terms, one
should make the operator right associative (xyf).

¢ Quoted strings cannot contain a quotation mark of the same type.
e Theflagcheck_ari ty sometimesissueswarningswhen it should not.

e Braces({ }) can be used to group input expressions, but OTTER aways usesordinary
parentheses on output.

4.9 Examples of Operator Declarations

Group Theory. Suppose we like to see group theory expressions in the form
(ab~te™ =1~ inwhichright associationis assumed. We can approximate thisfor OTTER
with (a*b™ *c¢~)" . (We have to make the group operator explicit; - 1 isnot a lega
OTTER name; the whitespace shown isrequired.) The declarationsop(400, xfy, *)
and op(350, yf,) suffice. Other examples of expressions (with minimum whites-

A~

pace) using these declarationsare (x*y) *z=x*y*z and (y*x) "~ =x" *y~.

11

OTTER Options. Optionsare normally input (Sec. 5.1) asin the following examples.

set (prol og_style variabl es).
clear(print_kept).
assi gn(max_gi ven, 300).

If, however, we make the declarations (the precedences are irrelevant in this case)

op(100, fx, set).
op(100, fx, clear).
op(100, xfx, assign).

then we may write

set prolog _style variabl es.
clear print_kept.
max_gi ven assi gn 300.

5 Commands and the Input File

Input to OTTER consists of a small set of commands, some of which indicate that a list of
objects (clauses, formulas, or weight templates) follows the command. All lists of objects
areterminated withend_of _| i st. The commands are givenin Table 5. There are afew
other commands for fringe features (Sec. 19).

Table 5: Commands

i ncl ude(file_name) . % read input fromanother file
op(precedence, type, name(s)) . % decl are operator(s)

make_eval uabl e(sym, eval-sym). % make a synbol eval uabl e

set (flag-name) . %set a flag

cl ear (flag-name) . %clear a flag

assi gn(parameter_name, integer) . % assign to a paraneter
['ist(listname). %read a list of clauses
formul ali st (listname) . %read a list formul as

wei ght i st (weightlist.name) . % read wei ght tenplates

I ex(symbol list) . % assign an ordering on synbols
skol en(symbol list) . % identify skol emfunctions

| rpo_mul tiset status(symbol list). % status for LRPO

5.1 Input of Options

OTTER recognizes two kinds of option: flags and parameters. Flags are Boolean-valued
options; they are changed with the set and the cl ear commands, which take the name
of the flag as the argument. Parameters are integer-valued options; they are changed with
theassi gn command, which takesthe name of the parameter asthefirst argument and an
integer as the second. Examples are

12

set (binary_res). % enabl e bi nary resol ution
cl ear (back_sub). % do not use back subsunption
assi gn(max_seconds, 300). % stop after about 300 CPU seconds

The options are described and their default values are given in Sec. 6.

5.2 Input of Lists of Clauses

A list of clauses is specified with one of the following and is terminated with
end_of _|i st. Each clauseisterminated with a period.

list(usable).
list(sos).

i st(denodul ators).
list(passive).

Example:
list(usable).

X = X. Y%reflexivity
f(e,x) = x. % left identity
f(g(x),x) = e. %l eft inverse
f(f(x,y),z) = f(x,f(y,2z)). % associ ativity
f(z,x) '=1f(z,y) | x =y. % | eft cancellation
f(x,z) '=f(y,z) | x =vy. % right cancellation

end_of _|ist.

If the input contains more than one clause list of the same type, the lists will simply be
concatenated.

5.3 Input of Lists of Formulas

A list of formulas is specified with one of the following and is terminated with
end_of _|i st. Eachformulaisterminated with aperiod. (Note that demodul ators cannot
be input as formulas.)

formula_list(usable).
formula_list(sos).
formul a_list(passive).

Example (analogousto above):

formula_list(usable).

all a (a = a). Y%reflexivity

all a (f(e,a) = a). % left identity

all a (f(g(a),a) =e). % 1l eft inverse

all aboc (f(f(a,b),c) =f(a,f(b,c))). %associativity

all abec (f(c,a) =f(c,b) ->a =D0). % |l eft cancellation
all abec (f(a,c) =f(b,c) ->a =D0). % right cancellation

end_of _|ist.

13

If the input contains more than one formula list of the same type, the lists will simply be
concatenated.

5.4 Input of Lists of Weight Templates

A list of weight templates is specified with one of the following and is terminated with
end_of _| i st. Each weight template isterminated with a period.

wei ght _I i st (pick_given). %to select given clauses

wei ght _l i st (purge_gen). % to discard generated cl auses

wei ght _li st(pick_and_purge). %to both pick and purge

wei ght _list(terms). %to order terns

Example:

wei ght _| i st (pick_and_purge).
wei ght (a, 0). % wei ght of constant a is O
wei ght (g($(2)), -50). % twi ce weight of arg -50
wei ght (P($(1),$(1)), 100). % sum of wei ghts of args +100
wei ght (x, 5). % al | variabl es have weight 5

wei ght (f(g($(3)),%$(4)), -300). %see Sec. ‘‘Wighting’
end_of _|ist.

See Sec. 10 for the syntax and use of weight templates.

5.5 The Commandd ex, skol em andl r po_nul ti set _st at us

Each of the commands | ex, skol em and | rpo_rul ti set _st at us takes alist of
terms as an argument. Thel ex command specifies an ordering on symbols, and the others
give propertiesto symbols. An exampleis

lex([a, b, f(_,_), d, 9(1), ¢c]).

The arguments of f and g serve as place-holders only; they identify f and g as function or
predicate symbols and specify the arity.

lex([...]). Thel ex command specifies an ordering (smallest-first) on function and
constant symbols. Lexical ordering on termsisused in four contexts: orienting equal-
ity literals (Secs. 8.1.2 and 8.2.2), deciding whether an equality will be used as a
demodulator (Secs. 8.1.3 and 8.2.3), deciding whether to apply a lex-dependent de-
modulator (Secs. 8.1.4 and 8.2.4), and evaluating functions/predicates that perform
lexical comparisons (Sec. 9). If al ex command is not present, then OTTER uses a
default ordering (Sec. 8).

skolem([...]). The skolem command identifies constant and function
symbols as Skolem symbols. (If the user inputs quantified formulas
and OTTER Skolemizes, this command is not necessary.) The Skolem
property is used by the options para_ski p_skol em (Sec. 6.1.4) and
del ete_i dentical _nest ed_skol em(Sec. 6.1.5).

14

[rpo_nul tiset _status([...]). This command specifies multiset status for the
lexicographic recursive path ordering (flag | r po). See Sec. 8.2.

5.6 Other Commands

The command op(precedence, type, name(s)) , example op(400, xfy, +), declares
one or more symbols to have special properties with respect to input and output. See
Sec. 4.6.

The command make_eval uabl e(symbol, evaluable-symbol), for example
nmake_eval uabl e(_+_, $SUM _,), copies evaluation properties from an evalu-
able symbol to another symbol, so that one can write x+3 instead of $SUM x, 3) . See
Sec. 9.1

The command i ncl ude(file_.name) causes input to be read from another input
file. When the included file has been read, OTTER resumes reading commands after the
i ncl ude command. The file name must be recognized as an OTTER nhame, so if it con-
tains characters such as period, slash, or hyphen, it must be enclosed in (single or double)
quotes. Included files can include still other files. A list of objects (clauses, formulas,
or weight templates) cannot be split among different input files. One can, however, read
clausesinto alist from more than onefile, asin the following example.

standard input | filefLin | filef2.in
include("f1.in"). |[list(usable). |Ilist(usable).
include("f2.in"). |p(a). p(b).
end_of |ist. end_of |ist.
6 Options

Flags are Boolean-valued options, and parameters are integer-valued options. When the
user changes an option, OTTER sometimes automatically changes other options. The user
isinformed in the output file when such a change occurs.

Several additional flags and parameters are described in Sec. 19.

6.1 Flags

Flags are changed withtheset and cl ear commands, for example,

set (sos_queue) .
clear(print_given).

6.1.1 Main Loop Flags

A given clause istaken from sos at the beginning of each iteration of the main loop. The
default isto takethe lightest clause with respect to either wei ght _I i st (pi ck_gi ven)

15

orwei ght _|'i st (pick_and_purge) . If neither weight list is present, the weight of
aclauseisits number of symbols.

sos_queue. Defaultclear. If thisflagisset, thefirst clausein sos isselected asthe given
clause (the set of support list operates as a queue). This causes a breadth-first search, aso
called level saturation. Some information about search levelsis printed (see Sec. 16) if this
flag isset.

sos_st ack. Default clear. If thisflag is set, the last clause in sos becomes the given
clause (the set of support list operates as a stack). This causes a depth-first search (which
rarely isuseful with OTTER).

i nput _sos_first. Default clear. If thisflag is set, the input clausesin sos are givena
very low pi ck_gi ven weight so that they are the first clauses selected as given clauses.

i nteractive_gi ven. Default clear. If thisflag is set, then when it'stime to select a
new given clause, the user is prompted for a choice. This flag has priority over all other
flags that govern selection of the given clause.

print_gi ven. Default set. If thisflag is set, clauses are output when they become given
clauses.

print_|ists_at_end. Default clear. If this flag is set, then usabl e, sos, and
denodul at or s are printed at the end of the search.

6.1.2 Inference Rules

bi nary_res. Default clear. If thisflag is set, the inference rule binary resolution (along
with any other inference rules that are set) is used to generate new clauses. Setting thisflag
causestheflagsf act or anduni t _del et i on to be automatically set.

hyper _r es. Default clear. If thisflag is set, the inference rule (positive) hyperresolution
(along with any other inference rules that are set) is used to generate new clauses.

neg_hyper _res. Default clear. If thisflag is set, the inference rule negative hyperreso-
[ution (along with any other inference rules that are set) is used to generate new clauses.

ur _res. Default clear. If thisflag is set, the inference rule UR-resolution (unit-resulting
resolution) (along with any other inference rulesthat are set) isused to generate new clauses.

para_i nt o. Default clear. If thisflag is set, the inference rule “paramodulation into
the given clause” (along with any other inference rules that are set) is used to generate
new clauses. When using paramodulation, one should include the appropriate clause for
reflexivity of equality, for example, x=x.

para_from Default clear. If thisflag is set, the inference rule “paramodulation from
the given clause” (along with any other inference rules that are set) is used to generate
new clauses. When using paramodulation, one should include the appropriate clause for
reflexivity of equality, for example, x=x.

denod_i nf. Default clear. If thisflag is set, demodulation is applied, as if it were an
inference rule, to the given clause. Thisisuseful when term rewriting isthe main objective.

16

When thisflag isset, the given clauseis copied, then processed just like any newly generated
clause.

6.1.3 Resolution Restriction Flags

order _hyper. Default set. If thisflag is set, then the inference rules hyper _res
and neg_hyper _res are constrained by an ordering strategy. A literal in a satellite is
allowed to resolve only if it is maximal in the satellite. (A literal is maximal in a clause
if and only if there isno larger literal.) The ordering uses only the lexical value (asin the
| ex command or the default, Sec. 5.5) of the predicate symbol. (Thisflag isirrelevant for
positive hyperresolution with a Horn set.)

uni t _res. Default clear. Thisflag isarestriction on binary resolution. If it is set, then
all binary resolution inferences must be unit resolutions; that is, one of the parents must be
aunit clause. Setting thisflag causesto the flag bi nary_r es to be set aswell.

ur _| ast. Default clear. Thisflag is arestriction on unit-resulting resolution. If it is set,
then the UR-resolvent must come from the last literal of the nonunit parent (the nucleus).
Thisisrelated to the target strategy in linked UR-resolution.

6.1.4 Paramodulation Restriction Flags

para_from | ef t. Default set. If thisflag isset, paramodul ation is allowed fromthe | eft
sides of equality literals. (Appliesto both par a_i nt o and par a_f r ominferencerules.)

para_fromright. Default set. If thisflag is set, paramodulation is allowed from the
right sides of equality literals. (Appliesto both par a_i nt o and par a_f r ominference
rules.)

para_into_| eft. Default set. If thisflag is set, paramodulation is allowed into left
sides of positive and negative equalities. (Appliesto both para_i nt o and para_from
inference rules.)

para_i nto_right. Default set. If thisflag is set, paramodulation is alowed into right
sides of positive and negative equalities. (Appliesto both para_i nt o and para_from
inference rules.)

para_fromvars. Default clear. If thisflag is set, paramodulation from variables is
allowed. Warning: Setting this option may produce too many paramodulants. (Appliesto
both par a_i nt o and par a_f r ominferencerules.)

para_i nto_vars. Default clear. If thisflag is set, paramodulation into variables is
allowed. Warning: Setting this option may produce too many paramodulants. (Appliesto
both par a_i nt o and par a_f r ominferencerules.)

para_fromuni ts_only. Default clear. If thisflag is set, paramodulation is allowed
only if thefromclauseisaunit (equality). (Appliestoboth par a_i nt o andpara_from
inference rules.)

para_i nto_uni ts_only. Default clear. If thisflag is set, paramodulation is allowed

17

only if theinto clauseisaunit. (Appliesto both par a_i nt o and par a_f r ominference
rules.)

par a_ski p_skol em Default clear. If thisflag is set, paramodulation is never allowed
into subterms of Skolem expressions[16]. (Appliesto bothpar a_i nt o andpara_from
inference rules.)

para_ones_rul e. Default clear. If thisflag is set, paramodulation obeys the 1's rule.
(The 1'sruleisaspecial-purpose strategy for problemsin combinatory logic; its usefulness
has not been demonstrated elsewhere.) (Appliesto both para_i nt o and para_from
inference rules.)

para_al | . Default clear. If thisflag is set, al occurrences of the into term are replaced
with the replacement term. (Applies to both para_i nt o and par a_f r om inference
rules.)

6.1.5 Flags for Handling Generated Clauses

(Section 6.1.6 describes equality-related flags for handling generated clauses.)

det ai | ed_hi st ory. Default set. This flag affects the parent listsin clauses that are
derived by bi nary_res, para_from or para_i nt o. If theflag is set, the positions
of the unified literals or terms are given along with the IDs of the parents. See Sec. 16 for
examples.

or der _hi st ory. Default clear. Thisflag affects the order of parent listsin clauses that
are derived by hyperresolution, negative hyperresolution, or UR-resolution. If the flag is
set, then the nucleus is listed first, and the satellites are listed in the order in which the
corresponding literals appear in the nucleus. If theflag isclear (or if the clause was derived
by some other inference rule), the given clauseis listed first.

uni t _del eti on. Default clear. If thisflag is set, unit deletion is applied to newly
generated clauses. Unit deletion removes a literal from a newly generated clause if the
literal is the negation of an instance of a unit clause that occurs in usabl e or sos. For
example, the second literal of p(a, x) | q(a, x) isremoved by theunit- q(u, v) ; but
it is not removed by the unit - q(u, b) , because that unification causes the instantiation of
x. All such literals are removed from the newly generated clause, even if the result is the
empty clause. One can view unit deletion with unit clause P as demodulation applied to
literalswith the demodulator P = $T. (Unit deletion is not useful if all generated clauses
are units.)

back_unit _del eti on. Default clear. If thisflag is set, then whenever a unit clauseis
derived and kept, it is used to apply unit deletion to all existing clausesinusabl e or sos.

del et e_i denti cal _nest ed_skol em Default clear. If thisflag is set, clauses with
the nested Skolem property are deleted. A clause has the nested Skolem property if it
containsa a Skolem expression that (properly) containsan occurrence of itsleading Skolem
symbol. For example, if f isa Skolem function, a clause containing aterm f (f (x)) ora
term f (g(f (x))) isdeleted.

sort_literal s. Default clear. If thisflag is set, literals of newly generated clauses are

18

sorted—negative literals, then positive literals, then answer literals. The main purpose of
thisflag is to make clauses more readable. In some cases, thisflag can speed up subsump-
tion on non-unit clauses.

for_sub. Default set. If thisflag is set, forward subsumption is applied during the pro-
cessing of newly generated clauses. (New clauses are deleted if subsumed by any clausein
usabl e orsos.)

back_sub. Default set. If thisflag is set, back subsumption is applied during the pro-
cessing of newly kept clauses. (Clausesin usabl e or sos are deleted if subsumed by the
newly kept clause.)

fact or. Default clear. If thisflag is set, factoring is applied in two ways. First, factoring
is applied as a ssimplification rule to newly generated clauses. If a generated clause C' has
factors that subsume C, it is replaced with its smallest subsuming factor. Second, it is
applied as an inference rule to newly kept clauses. Note that unlike other inference rules,
factoring is not applied to the given clause; it isapplied to a new clause as soon asiit iskept.
All factors are generated in an iterative manner. Factoring is attempted on answer literals.
If fact or isset, aclause with n literalswill not cause a clause with fewer than » literals
to be deleted by subsumption.

6.1.6 Demodulation and Ordering Flags

denod_hi st ory. Default set. If thisflag is set, then when a clause is demodulated, the
ID numbers of the demodulators are included in the derivation history of the clause.

or der _eq. Default clear. If thisflag isset, equalitiesareflipped if theright sideisheavier
than the left. See Secs. 8.1.2 and 8.2.2 for the meaning of “heavier”.

eqg_uni ts_bot h_ways. Default clear. If thisflag is set, unit equality clauses (both
positive and negative) are sometimes stored in both orientations; the action taken depends
on the flag or der _eq. If order _eq is clear, then whenever a unit, say o« = /3, is
processed, 5 = « isautomatically generated and processed. If or der _eq is set, then the
reversed equality is generated only if the equality cannot be oriented (see Secs. 8.1.2 and
8.2.2).

denod_| i near . Default clear. If thisflag isset, demodulationindexingisdisabled, and a
linear search of denodul at or s are used when rewriting terms. With indexing disabled,
if more than one demodulator can be applied to rewrite a term, then the one whose clause
number islowestis applied; thisflag isuseful when demodulationisused to do* procedural”

things. With indexing enabled (the default), demodulation is much faster, but the order in
which denodul at or s isappliedis not under the control of the user.

denod_out _i n. Default clear. If thisflag isset, terms are demodul ated outside-in, left to
right. In other words, the program attemptsto rewrite a term before rewriting (left to right)
itssubterms. Thealgorithmis*repeat {rewrite theleftmost outermost rewritableterm} until
no more rewriting can be done or the limit isreached”. (The effect is like a standard reduc-
tionin lambda calculusor in combinatory logic.) If thisflag isclear, terms are demodul ated
inside-out (all subterms are fully demodulated before attempting to rewrite aterm). (The
evaluable conditional term $I F(condition, then-value, else-value) is an exception when

19

inside-out demodulation isin effect. See Sec. 9.)

dynam c_denod. Default clear. If thisflag is set, some newly kept equalities are made
into demodulators (Secs. 8.1.3 and 8.2.3). Setting this flag automatically sets the flag
order_eq.

dynam c_denod_al | . Default clear. If thisflag is set, OTTER attempts to make all
newly kept equalitiesinto demodulators (Sec. 8.1.3). Setting thisflag automatically setsthe
flagsdynam c¢_denod and or der _eq.

dynam c_denod_| ex_dep. Default clear. If this flag is set, dynamic demodulators
may be lex-dependent or LRPO-dependent. See Secs. 8.1.3 and 8.2.3.

back_denod. Default clear. |If this flag is set, back demodulation is applied to
denodul at or s, usabl e, and sos whenever a new demodulator is added. Back de-
modulation is delayed until the inference rules are finished generating clauses from the
current given clause (delayed until post _pr ocess). Setting the back _denod flag au-
tomatically setstheflagsor der _eq and dynani c_denod.

anl _eq. Default clear. |If this flag is set, a standard equational strategy will be
applied to the search. This flag is really a metaflag; its only effect is to alter
other flags as follows: set (para_from,set (para_i nto),set(para_fromleft),
clear(para_fromright), set(para_into_left), clear(para_into_right),
set(para_fromyvars),set(eq_units_bot h_ways),set(dynam c_denod_all),
set (back_denod), set (process_i nput), and set (1 rpo). This strategy is derived
mostly from equational strategies developed at Argonne by Larry Wos and Ross Overbeek.
It can also be used for Knuth-Bendix completion. See Sec. 8.3 for more details.

knut h_bendi x. Default clear. Setting this flag smply causes the preceding flag,
anl _eq, tobe set.

| r po. Default clear. If thisflag is set, then the lexicographic recursive path ordering (also
called RPO with status) is used to compare terms. If thisflag is clear, weight templates and
lexicographic order are used (Secs. 8.2 and 8.3).

| ex_order _vars. Default clear. Thisflag affects lex-dependent demodulation and the
evaluable functions and predicates that perform lexical comparisons. If thisflag is set, then
lexical ordering is a total order on terms; variables are lowest in the term order, with x
<Yy <Z<U=<V<W=<V6<V7<Vv8<-.--.If thisflag is clear, then avariable is
comparable only to another occurrence of the same variable; it is not comparable to other
variables or to nonvariables. For example, $LLT(f (x), f(y)) evaluatesto $T if and
only if | ex_order_vars isset. Iflrpoisset, | ex_order_vars hasno effect on
demodulation (Sec. 8.1.1).

synbol _elim Default clear. |If this flag is set, then new demodulators are ori-
ented, if possible, so that function symbols (excluding constants) are eliminated. A
demodulator can eliminate all occurrences of a function symbol if the arguments on
the left side are all different variables and if the function symbol of the left side does
not occur in the right side. For example, the demodulators g(x) = f(x,x) and
h(x,y) = f(x,f(y,f(g(x),g(y)))) eiminateal occurrencesof g and h, respec-
tively.

20

rewiter. Default clear. If this flag is set, then the clauses in the sos list will
simply be demodulated by the demodulators, the run will terminate. This is realy
just a metaflag, which automatically causes the several other options parameters to be
changed as follows. set (denod_i nf), cl ear (for_sub), cl ear(back_sub),
andassi gn(max_| evel s, 1).

6.1.7 Input Flags

check_ari ty. Default set. If thisflag is set, awarning isgiven if symbols have variable
arities (different numbers of arguments in different places in the input). For example, the
term f (&, a(b)) would be flagged. (Constants have arity 0.) If thisflag is clear, then
variable arities are permitted; in the preceding term, the two occurrences of a would be
treated as different symbols.

prol og_styl e_vari abl es. Default clear. If thisflag isset, aname withno arguments
inaclauseisavariableif and only if it starts with A through Z (upper case) or with _.

echo_i ncl uded_fil es. Default set. If thisflag is set, input files included with the
i ncl ude(filename) command are echoed in the same way as ordinary input.

sinplify_fol. Default set. If thisflag is set, then some propositional simplification is
attempted when converting input first-order formulas into clauses. The simplification oc-
curs after Skolemization, during the CNF trand ation. If simplification detects a refutation,
it will aways produce the empty clause $F, but OTTER will not recognize the proof (i.e.,
give the proof message and stop) unlessthe flag pr ocess_i nput isset.

process_i nput. Default clear. If this flag is set, input usabl e and sos clauses
(including clauses from formula input) are processed as if they had been generated by
an inference rule. (See the procedure for processing newly inferred clauses in Sec. 2.)
The exceptions are (1) the following clause-processing options are not applied to input
clauses: max_literal s, max_wei ght, del ete_i denti cal _nested_skol em
and max_di sti nct _vars, (2) clausesinput on list usabl e remain there if retained,
and (3) some output appears even if the output flags (Sec. 6.1.8) are clear.

t pt p_eq. Default clear. If thisflag is set, then “EQUAL” is the one and only symbol
recognized as the equality relation for the operations that build in equality (demodulation
and paramodulation).

6.1.8 Output Flags
very_verbose. Default clear. If thisflag is set, a tremendous amount of information
about the processing of generated clauses is output.

print_kept. Default set. If thisflag is set, new clauses are output if they are retained (if
they pass all retention tests).

print _proofs. Default set. If thisflag is set, al proofs that are found are printed to the
output file. If thisflag is clear, no proofs are printed.

bui I d_proof _obj ect _1. Default clear. If thisflag is set, then whenever a proof is

21

found, atype 1 proof object is printed to the output file. Proof objectsare very detailed proof
and were introduced for two purposes: so that proofs can be checked by an independent
program, and so that proofs can be trandated into other forms by other programs. Proof
objects are written in a Lisp-like notation. (Type 2 proof objects are usually preferred.)
Warning: Construction of proof objectsisfragile—sometimesit simply fails.

bui I d_proof _obj ect _2. Default clear. If thisflag is set, then whenever a proof is
found, atype 2 proof object is printed to the output file. Type 2 proof objectsare used in the
IVY verification project [19], and a detailed description (definition in ACL2) can be found
there. Warning: construction of proof objectsis fragile—sometimesit simply fails.

print _new denod. Default set. If thisflag is set, demodulatorsthat are adjoined during
the search (dynani ¢_denod) are printed. New demodulators are always printed during
input processing.

print _back_denod. Default set. If thisflag is set, clauses are printed as they are back
demodulated. Back-demodulated clauses are always printed during input processing.

print_back_sub. Default set. If thisflag is set, clauses are printed if they are back
subsumed. Back-subsumed clauses are always printed during input processing.

di spl ay_t erns. Default clear. If thisflag is set, al clauses and terms are printed in
pure prefix form (Sec. 4.3). Thisfeature can be useful for debugging the inpuit.

pretty_print. Default clear. If thisflag is set, clauses are output in an indented form
that is sometimes easier to read. The parameter pretty_print _i ndent (default 4)
specifies the number of spaces for each indent level.

bird _print. Default clear. If this flag is set, terms constructed with
the binary function a are output in combinatory logic notation (without the
function symbol a, and left associated unless otherwise indicated). For ex-
ample, the clause a(a(a(S,x),y),z) = a(a(x,z),a(y,z)) Iis output as
SXxy z =x 2z (y z).Termscannot beinputincombinatory logic notation.

f ormul a_hi st ory. Default clear. If thisflag isset, and if quantified formulas are given
as input, then the formulas will occur in proofs, and the clauses derived from the formulas
will refer to the formulas with the justification cl ausi fy.

6.1.9 Indexing Flags

i ndex_for_back_denod. Default set. If thisflag is set, all nonvariable terms in al
clauses are indexed so that the appropriate ones can be quickly retrieved when applying a
dynamic demodulator to the clause space (back demodulation). Thistype of indexing can
usealot of memory. If theflag isclear, back demodulation still works, but itis much slower.

f or _sub_f pa. Default clear. If thisflagisset, FPA indexing isused for forward subsump-
tion. If thisflag isclear, discrimination tree indexing is used. Setting thisflag can decrease
the amount of memory required by OTTER. Discrimination tree indexing can require a lot
of memory, but it is usually much faster than FPA indexing.

no_f apl . Default clear. If thisflag is set, positive literals are not indexed for unit conflict

22

or back subsumption. This option should be used only when no negative units will be
generated (as with hyperresolution), back subsumptionis disabled, and discrimination tree
indexing is being used for forward subsumption. This option can save a little time and
memory.

no_f anl . Default clear. If thisflag is set, negative literalsare not indexed for unit conflict
or back subsumption. This option should be used only when no positive unitswill be gen-
erated (as with negative hyperresol ution), back subsumptionisdisabled, and discrimination
tree indexing is being used for forward subsumption. This option can save alittletime and
memory.

6.1.10 Miscellaneous Flags

control _menory. Default clear. If thisflag is set, then the automatic memory-control
feature isenabled (Sec. 17).

proposi tional . Default clear. If thisflag is set, OTTER assumes that all clauses are
propositional, and it makes some optimizations. The user should set thisflag only when all
clauses are propositional; otherwise OTTER may make unsound inferences and/or crash.

real ly_del et e_cl auses. Default clear. If thisflag is clear, clauses that are deleted
by back subsumption or back demodulation are not really removed from memory; they
are retained in a specia place so that they can be printed if they occur in a proof. If the
job involves much back subsumption or back demodulation and if memory conservationis
important, these “deleted” clauses can be removed from memory by setting this flag (and
any proof containing such a clause will not be printed in full).

atom wt _max_ar gs. Default clear. If thisflag is set, the default weight of an atom
(the weight if no template matches the atom) is 1 plus the maximum of the weights of the
arguments. If thisflag isclear, the default weight of an atomis 1 plusthe sum of theweights
of the arguments.

termw _max_args. Default clear. If thisflag is set, the default weight of a term
(the weight if no template matches the atom) is 1 plus the maximum of the weights of the
arguments. If thisflag is clear, the default weight of atermis 1 plusthe sum of the weights
of the arguments.

free_al | _mem Default clear. If thisflag is set, then at the end of the search, most dy-
namically allocated memory is returned to the memory managers. Thisflag isused mainly
for debugging, in particular, to help find memory leaks. Setting this flag will not cause
OTTER to use lessmemory.

sigint_interact. Default set. If thisflag is set, then when OTTER receives an in-
terrupt signal from the operating system (usually caused by the user pressing control-C),
OTTER will enter a primitive interactive mode, which is described in Sec. 15.

23

6.2 Parameters

Parameters are integer-valued options. In the descriptionsthat follow, oc isalarge integer,
usualy the size of the largest ordinary integer on the user’s computer (i.e., INT MAX in
ANSI C).

6.2.1 Monitoring Progress

assign(report, n). Default —1, range [—1..0c]. If n > 0, then statistics are output
approximately every n CPU seconds. Thetime is not exact because statisticswill be output
only after the current given clause isfinished. Thisfeature can be used in conjunction with
UNIX programssuch asgr ep and awk to conveniently monitor OTTER jobs.

6.2.2 Placing Limits on the Search

assi gn(max_seconds, n). Default —1, range [—1..0c]. If n # —1, the search is
terminated after about » cPU seconds. The time is not exact because OTTER will wait until
the current given clause isfinished before stopping.

assi gn(max_gen, n) . Default —1, range[—1..0c]. If n # —1, the search is terminated
after about » clauses have been generated. The number is not exact because OTTER will
wait until it isfinished with the current given clause before stopping.

assi gn(max_kept, n). Default —1, range [—1..00]. If n # —1, the search is termi-
nated after about n clauses have been kept. The number is not exact because OTTER will
wait until it isfinished with the current given clause before stopping.

assi gn(max_gi ven, n) . Default —1, range [—1..c0]. If n # —1, the search is termi-
nated after »n given clauses have been used.

assi gn(max_| evel s, n). Default —1, range [-1..00]. If n # -1, the flag
sos_queue will be automatically set, causing a level saturation (breadth-first) search.
In this case the search is terminated after » levels have been processed.

assi gn(max_nmem n) . Default —1, range [—1..00]. If n # —1, OTTER will terminate
the search before more than » kilobytes have been dynamically allocated (mal | oc).

6.2.3 Limits on Properties of Generated Clauses
assign(max_literals, n). Default —1, range[—1..o0c]. If » # —1, new clauses are
discarded if they contain more than » literals.

assi gn(max_wei ght, n) . Default oo, range [—oo..00]. New clauses are dis-
carded if their weight is more than n. The weight list pur ge_gen or the weight list
pi ck_and_pur ge isused to weigh clauses (both listsmay not be present; see Sec. 10).

assi gn(max_di sti nct _vars, n). Default —1, range [-1..0c]. If n # —1, new
clauses are discarded if they contain more than » distinct variables.

24

assi gn(max_answer s, n) . Default —1, range[—1..o0]. If n # —1, new clauses are
discarded if they contain more than »n answer literals.

6.2.4 Indexing Parameters

assign(fpa_literals, n). Default 8, range [0..100]. n isthe FPA indexing depth
for literals. (FPA literal indexing is used for resolution inference rules, back subsumption,
and unit conflict. It isalso used for forward subsumptionif theflagf or _sub_f pa isset.)
If n = 0, indexing is by predicate symbol only; if » = 1, indexing looks at the predicate
symbol and the leading symbolsof the arguments of theliteral, and so on. Greater indexing
depth requires more memory, but it can be faster. Changing this parameter will not change
the clauses that are generated or kept.

assign(fpa_terms, n). Default 8, range [0..100]. n isthe FPA indexing depth for
terms. (FPA term indexing is used for paramodulation inference rules and back demodula-
tion.) If n = 0, indexing is by symbol only; if » = 1, indexing looks at the symbol and the
leading symbols of the arguments of the term; and so on. Greater indexing depth requires
more memory, but it can be faster. Changing this parameter will not change the clauses that
are generated or kept.

6.2.5 Miscellaneous Parameters

assi gn(pi ck_given_ratio, n). Default —1, range[—1..00]. Thisparameter causes
some given clausesto be selected by weight and othersin a breadth-first manner (by age). If
n # —1, n given clauses are are selected by (smallest pi ck_gi ven) weight, then thefirst
clausein sos isselected as given clause, then » given clauses are selected by weight, and
so forth. This method allows heavy clauses to enter into the search while focusing mainly
on light clauses. It combines breadth-first search and best-first search (default selection by
weight). If n is—1, then the clause with smallest pi ck_gi ven weight is always selected.

assi gn(age_factor, n). Default O, range [—oc..0c]. If » #0, then the pick-given
weight of clausesis adjusted as follows. If ¢ isthe number of clauses that have been given
at the time the clause is kept, and » is the age factor, then ¢g/n (with integer division) is
added to the pick-given weight of the clause.

assi gn(distinct_vars_factor, n). Default O, range [—oc..00]. If n #£0, then
the pick-given weight of clausesis adjusted asfollows. If v isthe number of variablein the
clause, and n is the age factor, then v/n (with integer division) is added to the pick-given
weight of the clause.

assign(interrupt_given, n). Default —1, range[—1..oc]. If n > 0, then after n
given clauses have been used, OTTER goes into itsinteractive mode (Sec. 15).

assign(denod_limt,n). Default 1000, range [—1..oc]. If n # —1, n isthe max-
imum number of rewrites that will be applied when demodulating a clause. The count
includes$ symbol evaluation. If n is—1, thereisno limit. A warning message s printed if
OTTER attemptsto exceed the limit.

assi gn(max_pr oof s, n) . Default 1, range [—1..00]. If n = 1, OTTER will stop if it

25

findsaproof. If » > 1, then OTTER will not stop when it has found the first proof; instead,
it will try to keep searching until it has found » proofs. (Some of the proofs may in fact be
identical.) (Because forward subsumption occurs before unit conflict, a clause representing
atruly different proof may be discarded by forward subsumption before unit conflict detects
the proof.) If n = —1, OTTER will find as many proofs asit can (within other constraints).

assign(m n_bi t_wi dt h, n). Default bits-per-long, range [O..bits-per-long]. When
the evaluable bit operations (Sec. 9) produce a new bit string, leading zeros are suppressed
under the constraint that = is the minimum string length. (The value bits-per-long is the
number of bitsinthe C datatype long integer.)

assi gn(neg_wei ght, n) . Default O, range [—o0..00]. The value n is the additional
weight (positive or negative) that is given to negated literals. Weight templates cannot be
used for this purpose because the negation sign on aliteral cannot occur inweight templ ates.
(Atoms, not literals, are weighed with weight templ ates; see Sec. 10.)

assign(pretty_print_indent, n). Default 4, range [0..16]. See flag
pretty_print, Sec. 6.1.8.

assign(stats_Il evel, n). Default 2, range[0..4]. Thisindicatesthe level of detail of
statistics printed in reports and at the end of the search. If n = 0, no statisticsare output; if
n = 1, afew important search and time statistics are output; if » = 2, al search and time
statisticsare output; if » = 3, search, time, and memory statisticsare output; and if n = 4,
search, time, and memory statistics and option values are output. This parameter does not
affect the speed of OTTER, because all statisticsare alwayskept.

assi gn(dynamni c_denod_dept h, n) . Default-1, range[—1 ..oc].

assi gn(dynam c_denod_r hs, »n) . Default 1, range [—o0..o¢].

These two parameters work together, allowing an extension of the ad hoc ordering when
deciding whether a new equality should be a demodulator. (It is not used if flag | r po
is set.) The equality, say o = §, is first oriented as described in Sec. 8.1. If wit(5) <
dynam c_denod_r hs and if wt(a) — wt(8) > dynam c_denod_dept h, then the
equality can be ademodulator. With the default values for these parameters, the behavior is
as described in Sec. 8.1

assi gn(new_synbol _| ex_posi tion, n). Default oo, range[1..0c]. New symbols
can be created during the search, usually by $-evaluation. With this parameter, the user can
specify where they will occur in the symbol ordering. If there is a | ex command, all
new symbolswill have a lexical values between the nth and (n 4 1)th symbol in the | ex
command. The ordering among the new symbolsis the default ordering. This aso applies
to input symbols not occurring inthel ex command.

7 Demodulation

Basic demodulation is straightforward, but there are many variations and enhancements
whose descriptions are scattered throughout this manual. This section (which is mostly
redundant) lists some overall comments on demodulation and points the reader to the ap-
propriate sections on variations and enhancements.

26

The Equality Symbol. The binary symbol = (which can be used as an infix symbol) and
any name that startswith eq, EQ, or Eq, when used as a binary predicate symbal, is recog-
nized as an equality predicate by demodulation. An exception: if theflagt pt p_eq isset,
then EQUAL isthe one and only equality symbol; thisflag wasintroduced for compatibility
with the TPTP problem library [25].

When and How It Is Applied. Demodulation is applied, using equalities in the list
denodul at or s, to every clause that is generated by an inference rule. Also, when the
flagdenod_i nf (Sec. 6.1.2) isset, demodulationis, in effect, treated as an inferencerule.

Demodulation of Atomic Formulas. Atomic formulas (literals with any negation sign
removed) can be demodulated. Useful examples are

(x*y = x*z) = (y = 2z). %one formof cancellation
D(x,y) = vy, Xx). % | ex- dependent at om denodul at or
P(junk) = $T. %trick to get rid of a literal

The appropriate clause simplification occurs if the right side of an atom demodulator is one
of the Boolean constants $T or $F. Negated literals cannot be demodulated, but the atom
of anegative literal can be demodulated.

Inside-out or Outside-in. The user has the option of having terms rewritten inside-out or
outside-in. (See the description of the flag denod_out _i n in Sec. 6.1.6.) Although the
choice makes little difference for many applications, we nearly aways recommend inside-
out. Outside-in can be much faster in cases where the left side of the demodulator has a
variable not in the right side.

Order of Demodulators. By default, demodulation uses an indexing mechanism to find
demodulators that can rewrite a given term; if more than one demodulator can apply, the
user has no control over which oneisused. To order the set of demodulatorsfor application,
the user can set the flag denod_I i near (Sec. 6.1.6).

Dynamic Demodulation and Back Demodulation. Positive equality units derived dur-
ing the search can be made into demodulators (Secs. 6.1.6, 8.1.3, and 8.2.3). Demodul ators
adjoined during the search can be used to rewrite previously derived clauses (Sec. 6.1.6).

Termination. With the default ad hoc ordering, demodulation is not guaranteed to termi-
nate by itself. Therefore, a parameter (denod_| i mi t) specifies the maximum number of
rewrite stepsthat will be applied to a clause. With the lexicographic recursive path ordering
(flag | r po), demodulation will always terminate by itself. (Even with | r po, the parame-
ter denod_I i mi t has effect because demodulation sequences can have an unreasonable
number of steps.)

27

Introduction of New Variables. A demodulator introduces new variables if it has vari-
ables on the right side that do not occur on the left. The LRPO flag does not allow demod-
ulatorsto introduce new variables. The default ordering allows variable introductions only
for input demodulators.

Lex- and LRPO-dependent Demodulation. Ordinary demodulators are used uncondi-
tionally; they usually simplify or canonicalize regardless of the context in which they are
applied. But some equalities that are not normally thought of as rewrite rules can be used
as such and are applied only if the application produces a “better” term. These are called
lex- or LRPO-dependent demodulators (depending on whether the flag | r po is set). For
example, commutativity of an operation, say = + y = y + «, can be used to rewrite b + «
toa+bifa+b < b+ a. SeeSecs. 6.1.6, 8.1.4, and 8.2.4. Do not confuse this type of
demodulation with conditional demodulation.

Demodulation of Evaluable Terms. OTTER has many built-in function and predicate
symbols for doing arithmetic, logic operations, bit operations, and other operations. The
evaluation of terms containing these built-in symbols is done as a part of demodulation
(Sec. 9).

Conditional Demodulation. Demodulators can be written with conditions as
condition-> o = 3.

The demodulator is applied only if the condition, instantiated with the matching substitu-
tion, demodulates to $T (meaning true). Thisis a “fringe feature”, and it has not been
heavily used (Sec. 19.4).

Demodulation as Equational Programming. OTTER’s demodulation, especialy with
the evaluable symbols, can be used as a genera -purpose (although not particularly efficient
or convenient) egquationa programming system (Sec. 9). We have not seen many cases
where thisis useful in the context of a traditional refutation search, but it has proved to be
very useful for various symbolic programming tasks, particularly with hyperresolution.

Demodulation to Delete Clauses. Demodulation can be used as a trick to overcome one
of the deficiencies of the weighting mechanism (Sec. 10) to discard undesired clauses.
Weighting does not implement a true match (one-way unification) operation. If the user
wishesto discard every clause that contains an instance of aparticular term, say f (X, x) , a
demodulator, say f (X, X) =] unk, can beinput along with aweight template that gives
j unk apurge_gen weight higher than max_wei ght . (When using this and smilar
tricks, the user must make sure that the clauses containing j unk are realy discarded by
weighting or another means; on occasion we have found proofs that are incorrect because
they depend onj unk.)

28

8 Ordering and Dynamic Demodulation

This section contains a more complete explanation of the options | ex_or der _var s,
order _eq, synbol _eli m dynam c_denod, dynam c_denod_al |, | r po, and
dynam c_denod_| ex_dep. It givesal the rules—built in and optional—for orienting
equality literals and deciding which equalities will be dynamic demodulators. OTTER uses
two kinds of term ordering.

ad hoc ordering. This is a collection of ordering methods that we have accumulated
through many years of experimentation. The methods do not have a substantial theo-
retical foundation, but they are useful in many cases. Thisisthe default ordering; it
ispresented in Sec. 8.1.

LRPO. Thisis the lexicographic recursive path ordering (also called RPO with status). It
has nice theoretical properties and is easier to use than the ad hoc ordering, but it is
more computationally expensive. The LRPO ordering is enabled withtheflag | r po;
itisdescribed in Sec. 8.2.

Both kinds of term ordering use an ordering on constant and function symbols. Thel ex

command (Sec. 5.5) isused to assign an ordering on symbols. For example, the command
lex([a, b, ¢, d, or(_,)]).

specifiesa < b < ¢ < d < or (or isabinary symbal). If al ex command isgiven,

all constant and function symbolsin termsthat will be compared must beincluded. If al ex
command isnot given, OTTER uses the following default ordering.

[constants, high-arity, ---, binary, unary]

Within arity, the lexicographic Ascii ordering (i.e., the C library routinest r conp()) is
used.

The methods for orienting equalities and for determining dynamic and lex-dependent
demodulators apply to al inferred clauses; if the flag pr ocess_i nput isset, they aso
apply toinput usabl e and sos clauses.

In this section, « and 5 aways refer to the left and right arguments, respec-
tively, of the equality literal under consideration; wt(~y) refers to the weight of ~ using
wei ght _l i st_t erms; vars(y) isthe set of variablesin~. The symbols - and < are
used for several orderings; the one referred to should be clear from the context.

Table 6 is a quick reference guide to the ordering mechanisms presented in Secs. 8.1
and 8.2.

8.1 Ad Hoc Ordering
8.1.1 Term Ordering (Ad Hoc)

Two types of ad hoc term ordering are used: |ex-order and weight-lex-order. The user does
not have a choice between these two; the one that is applied depends on the context, as

29

Table 6: Quick Reference to Ordering

| Situation I AdHoc I LRPO |
Input demods flip? no if o« <3
lex-dependent? || if ident-x-vars if neither is greater
o flipif sym-elim, o
Orienting egs (or der _eq set) occurs.in, or wt-lex-ord flipifa<p
iT oriented, var-subset, .
d_d_al | clear ifa > 3

and wi(8) < 1

Dynamic demod? | d_d_al | set if oriented and var-subset ifa>f
if Tdent-x-vars and

lex-dependent? || dynami c_denod_al |

if neither is greater,

ot and var-subset
Apply lex-dependent demod? lex-order(ao, 5o) ao - fo
Lex $ evaluation lex-order lex-order

described in the following subsections.

lex-order. Thisis a basic lexicographic extension of the symbol order. To compare two
terms, one reads them left to right, stopping at the first symbolswhere they differ; the
relationship of those symbols determines the term order. The treatment of variables
dependsontheflag| ex_or der _vars:

| ex_or der _var s is set. Variables are the lowest in the symbol ordering, withx <
y<Z<U<V<W=<V6=<V7<V8<---.Sincetheorder on symbolsis
total (any two symbols are comparable), the lexical order on termsis total (any
two terms are comparable). Note that applying a substitution to a pair of terms
may change their relative order.

| ex_order _var s is clear (the default). A variable is comparable only to itself
and to a term that contains the variable. The order on terms is partial. Note
thatif £, < 9, andif ¢ isany substitution, thent o < t0.

weight-lex-order. In comparing two terms, they are first weighed with
weight _|ist_termnms. If oneterm is heavier, it is greater in the order. |If
the terms have equal weight, they are compared with respect to the lex-order as if
| ex_order _vars isclear.

8.1.2 Orienting Equalities (Ad Hoc)

If the flag order _eq issetand | r po is clear, then equality literals (both positive and
negative) in inferred clauses are processed as follows.

1. If the synbol _el i mflag is set and if the equality is a symbol-eliminating type
(Sec. 6.1.6), the equality isoriented in the appropriate direction.

2. If oneargument isa proper subterm of the other argument, the equality is oriented so
that the subterm is the right-hand argument.

3. If one argument is greater in the weight-lex-order, say v > 4, the equality is oriented
with ~ as the left side.

30

The preceding steps do not apply to equalitiesinput on thelist denodul at or s.

8.1.3 Determining Dynamic Demodulators (Ad Hoc)

A dynamic demodulator is a demodulator that is inferred rather than input. If either of the
flagsdynam c_denod or dynami c_denod_al | isset, the flag or der _eq will dso
be set, and OTTER will attempt to make some or all inferred positive equality units into
demodulators. If theflag pr ocess_i nput isset, the procedure appliestoinput usabl e
and sos equalities. The procedure assumes that equalities have already been oriented.

1. If theflag synbol _el i misset and if @« = 3 is symbol-eliminating, the equality
becomes a demodul ator.

2. If g isaproper subterm of «, the equality becomes a demodulator.
3. If a > g inthe weight-lex-order, and if vars(a) O vars(§),

(@ if dynam c_denod_al | isset, the equality becomes a demodulator;

(b) if dynam c_denod_al | isclear and if wt(5) < 1, the equality becomes a
demodulator.

4. If dynam c_denod_| ex_dep anddynamni c_denod_al | arebothset, if o and
(3 areidentical-except-variables (Sec. 8.1.4), and if vars(a) D vars(f3), the equality
becomes a lex-dependent demodulator.

8.1.4 Lex-dependent Demodulation (Ad Hoc)

Two terms are identical-except-variablesif they areidentical after replacing all occurrences
of variables with x. An input or dynamic demodulator is lex-dependent only if « and
(3 are identical-except-variables. (See Sec. 8.1.3 for determining lex-dependent dynamic
demodulators.) A lex-dependent demodulator appliesto aterm only if the replacement term
is smaller in the lex-order. In particular, OTTER will apply a lex-dependent demodulator
a = gifandonly if wo = o inthelex-order, where o isthe matching substitution.

For example, in the presence of the | ex command and the (lex-dependent) demodula-
tors

lex([a, b, c, d, or(_,)]).
list(denodul ators).
or(x,y) = or(y,Xx).

or(x,or(y,z)) = or(y,or(x,z)).
end_of _|ist.

thetermor (or (d, b), or (a, c¢)) will be demodulatedto or (a, or (b, or(c, d)))
(in severa steps).

31

8.2 LRPO
8.2.1 Term Ordering (LRPO)

The lexicographic recursive path ordering (LRPO, or RPO with status) [4, 7, 9] is a method
for comparing terms. The important theoretical property of LRPO isthat it isatermination
ordering. Thatis, let R be aset of demodulatorsin which in each demodulator, the left side
is LRPO-greater than the right side; then demodulation (applying the demodulators | eft to
right) is guaranteed to terminate.

To use LRPO one typically uses the | ex command (Sec. 5.5) to assign an ordering
on constant and function symbols. If thel ex command is not present, OTTER assigns an
ordering (which is frequently ineffective). (OTTER uses atotal ordering on symbolsthat is
fixed at input time. Other implementations of LRPO use partial orderings or dynamically
changing orderings.)

With respect to LRPO, function symbols can have either left-to-right status (the default)
or multiset status. Thecommand | r po_mul ti set _st at us(symbol list) givessymbols
multiset status.

L RPO comparison isused when orienting equality literals, deciding whether an equality
should be ademodul ator or an LRPO-dependent demodulator, and deciding whether to apply
an LRPO-dependent demodulator. LRPO comparison is never used when evaluating the
functiong/predicatesthat perform lexical comparison ($LLT, $LGT, etc.).

8.2.2 Orienting Equalities (LRPO)

If theflag or der _eq isset and if one argument of the equality literal (positive or negative)
isgreater in the LRPO order, the greater argument is placed on theleft side. Thisrule applies
toinput demodul ators, to inferred clauses, and, if theflag pr ocess_i nput isset, toinput
usabl e and sos clauses.

8.2.3 Determining Dynamic Demodulators ((RPO)

If theflag dynam c_denod isset, OTTER attemptsto make all equalitiesinto demodula-
tors (dynami c¢_denod_al | isignoredwhen| r po isset). If o = 3 inthe LRPO order,
the derived equality becomes a demodulator (« is not LRPO-less-than /3, because orient-
ing has aready occurred). If dynami c_denod_| ex_dep isset, if neither argument is
LRPO-less-than the other, and if every variable that occursin g aso occursin «, the derived
equality becomes an L RPO-dependent demodulator.

8.2.4 LRpPO-dependent Demodulation (RPO)

An LRPO-dependent demodulator is allowed to rewrite aterm if and only if its application
produces an LRPO-less-than term.

32

8.3 Knuth-Bendix Completion

The Knuth-Bendix completion procedure [12] attempts to transform a set £/ of equalities
into a terminating, canonical set of rewrite rules (demodulators). If it is successful, the re-
sulting set of rewrite rules, acompl ete set of reductions, is adecision procedure for equality
of termsin the theory E. There are many variations and refinements of the Knuth-Bendix
procedure.

Setting either of theflagsanl _eq or knut h_bendi x causes OTTER to automatically
alter a set of options so that its search will behave like a Knuth-Bendix completion proce-
dure. If OTTER’s search stops becauseitssos listisempty, and if certain other conditions
are met, then the resulting set of equalities should be a complete set of reductions. (OTTER
was not designed to implement a completion procedure, and it has not been optimized for
completion.)

Conjecture. If (1) the set ' of equalities, along with x=x, isinputin list sos, (2) flag
anl _eq isset, (3) other optionsthat are changed from the defaults do not affect the search,
(4) OTTER stops with “sos empty”, and (5) other than x=x, the final usabl e list is the
same asthe final denodul at or s list, thenthe denpdul at or s listisacomplete set of
reductionsfor F.

Hereisan input file that causes OTTER to search for and quickly find a complete set of
reductions for free groups. Note that the predeclared (right associative) infix operator * is
used.

set (anl _eq).
set(print_lists_at_end).
lex([e, _*_, 9())]).

list(sos).

X = X.

e*x = X. % left identity
g(x)*x = e. %l eft inverse

(x*y)*z = x*y*z. 9% associativity
end_of _|ist.

The critical issue in most applications of the Knuth-Bendix completion procedure is the
choice of ordering scheme and/or the specific ordering on symbols. Note, in this case, that
if thel ex command is absent, the default symbol ordering suffices becauseit is essentialy
the same as the one specified.

Theanl _eq flag isaso very useful when trying to prove equational theorems. When
using anl _eq to search for proofs, we are not bound by the conditionslisted in the above
claim; in fact, we usually apply additional strategies such as limiting the size of retained
equalities, being more selective about making equalities into demodulators, and disabling
LRPO ordering.

With the following input file, OTTER usestheanl _eq optionto prove the difficult half
of a group theory theorem of Levi: The commutator operation is associativeif and only if
the commutator of any two elements lies in the center of the group. (A textbook proof can
befoundin[13].) Note that, contrary to common practice, the symbol order does not cause

33

the definition of the commutator operationh(_,) tobeused asarewriteruleto eliminate
commutator expressionsin h. Note al so that weight templates are used to eliminate clauses
containing terms with particular structures; this decision is purely heuristic, derived from
experimentation and intuition. OTTER finds a proof in about a minute and uses about 6
megabytes of memory.

set (anl _eq).

lex([a,b,c,e,h(_,), f(_).9()]).

assi gn(max_wei ght, 20). assign(pick_given_ratio, 5).
clear(print_kept).

cl ear(print_new denod). clear(print_back_denod).

list(usable).

X = X.

f(e,x) = x. % group theory
f(g(x),x) =e.

f(f(xy),z) = f(x, f(y,2)).

end_of _|ist.

list(sos).
f(ag(x),f(a(y),f(x,y))) = h(x,y). %definition of conmutat or
h(h(x,y),z) = h(x,h(y,z)). % commut ator i s associ ative

% Denial: there are two el enents whose conmut at or
%is not in the center.

f(h(a,b),c) !'=f(c,h(a,b)).

end_of _|ist.

wei ght _l i st (purge_gen).

wei ght (h($(0), f ($(0), h($(0), $(0)))), 100).
wei ght (h(f ($(0), h($(0),$(0))), $(0)), 100).
wei ght (h($(0), f (h($(0),$(0)),$(0))), 100).
wei ght (h(f (h($(0), $(0)), $(0)), $(0)), 100).
wei ght (h($(0), h($(0), h($(0), $(0)))), 100).
wei ght (h($(0), f($(0), f($(0),$(0)))), 100).
wei ght (h(f ($(0), f($(0),$(0))),$(0)), 100).

end_of _|ist.

9 Evaluable Functions and Predicates§fSUM $LT, ...)

OTTER can beusedina*“programmed” modethat isquite different from normal refutational
theorem proving. When using the programmed mode, one generally hasin mind aparticular
method for solving a problem; and when writing clauses for the programmed mode, one
generally knows exactly how they will be used by OTTER.

The programmed mode frequently involves a set of evaluable function and predicate
symbols known as the $-symbols (because each starts with $). Examples are $SUM and
$LT for integer arithmetic and $AND for Boolean operations.

The evaluable symbol soperate on five typesof OTTER term: integer constants, floating-
point constants, bit-string constants, the Boolean constants $T and $F, and arbitrary terms.
The symbolsthat evaluate to type Boolean can occur either asfunction symbolsor as pred-

34

icate symbols. The integer, bit, and floating-point operations behave the same as the under-

lying C operations applied to the data types “long int”, “unsigned long int”, and “double”,
respectively. Table 7 liststhe evaluable functionsand predicates by type.

Table 7: Evaluable Functions and Predicates

int X int — int $SUM $PROD, $DI FF, $DI V, $MOD

int X int — bool $EQ $NE, $LT, $LE, $GT, $CGE

float x float — float $FSUM $FPROD, $FDI FF, $FDI V

float x float — bool $FEQ $FNE, $FLT, $FLE, $FGT, $FGE

bits x bits — bis $BIT_AND, $BI T_OR $BI T_XOR

bits x inl — bils $SHI FT_LEFT, $SH FT_RI GHT

bits — bits $BI T_NOT

int — bits $INT_TO BI TS

bits — int $BI TS TO | NT

— bool $T, $F

bool x bool — bool $AND, $OR

bool — bool $TRUE, $NOT

bool x term X term — term | $I F

term x term — bool (lexica) | $I D, SLNE, $LLT, SLLE, $LGT, $LCE

term X term — bool (other) | $OCCURS, $VOCCURS, $VFREE, $RENANVE

term — bool $ATOM C, $I NT, $BI TS, $VAR, $GROUND
| = int | SNEXT_CL_NUM $UNI QUE_NUM |

Additional notes on the operations (unless otherwise stated, the term in question evalu-
atesif all arguments demodul ate/eval uate to the appropriate type):

e int X it — tnt. The symbol $SUMis addition, $PROD is multiplication, $DI FF is
subtraction, $DI V isinteger division, and $MOD is remainder.

e float x float — float. These operations are analogous to the integer operations
except that there is no floating-point remainder operation. The syntax of floating-
point numbersisdescribed in Sec. 19.8

e int X int — bool. These are the ordinary relational operations on integers. The
symbol $EQis=, $NEis#, $LT is<, $LEis <, $CT is >, and $CE is >.

e bits X int — bits. The shift operations$SHI FT_LEFT and $SHI FT_RI GHT shift
the first argument by the number of places given by the second argument.

e bits X bits — bits. The symbols$BI T_AND, $BI T_OR, and $BI T_XOR are the
bitwise conjunction, disjunction, and exclusive-or operations.

e bits — bits. The symbol $BI T_NOT is the one's complement operation on bit
strings.

e int — bits. The symbol $I NTS_TO BI TS trandates a decimal integer to a bit
string.

35

bits — int. Thesymbol $BI TS_TO | NT trandatesabit string to the corresponding
decimal integer.

— bool. The symbols $T and $F represent true and false. When they appear as
literals or atomic formulas in clauses, the clauses are simplified as appropriate.

bool — bool. The symbol $TRUE is essentially a “no operation” on Boolean con-
stants. It isused to trick hyperresolutioninto evaluating literals (see below).

bool x term x term — term. The$l F function isthe if-then-else operator. When
inside-out (the default) demodulation encounters aterm $I F(condition, ¢4, t3),
demodulation takes a path different from its normal inside-out behavior. The term
condition is demodulated (evaluated); if the result is $T, the value of the $I F term
isthe result of demodulating ¢ ; if the result is $F, the value of the $I F term is the
result of demodulating ¢,; if the result is neither $T nor $F, demodulation returns to
itsnormal behavior. Note that if the condition evaluates to a Boolean value, demod-
ulation deviates from itsinside-out behavior, because just one of ¢ ; and ¢, is demod-
ulated. (If demodulation were always outside-in, $I F would not need to be built in
because it could be efficiently defined with the two demodulatorsi f ($T, x, y) =x
andi f ($F, x,y)=y.)

term X term — bool (lexical). These operations are analogousto the six operations
inent X int — bool except that the comparisons are lexical instead of arithmetic.
The symbol $I D tests identity of terms. The lexical comparison is the same as in
lex-dependent demodul ation; in particular, theflag | ex_or der _var s (Secs. 6.1.6
and 8.1.1) is consulted during these operations.

term xterm — bool (other). Theterm $OCCURS(¢, t2) istrueif ¢, isasubterm of
t2, including the case when they are the same. The term $VOCCURS(¢, t2) istrue
if t; isavariablethat occursint,. Theterm $VFREE(¢4, t,) istrueif ¢, isavariable
that does not occur inty. The term SRENAMVE(¢, t2) istrueif ¢y and ¢, have the
same structure; that is, if we rename al variablesto z, the terms are identical.

term — bool. A term is $ATOM C iff it is a constant (including integer and bit
string), aterm isa $I NT iff it is an integer, aterm isa $BI TS iff it is a string of
{0,1}, aterm isa $VARIff it isa (unbound) variable, and aterm is a $GROUND iff it
does not contain any variables.

— ent. Theterm $NEXT_CL_NUM (no arguments) evaluates to the next integer that
will be assigned as a clause identifier (this is useful for placing the ID of a clause
within the clause). A sequence of calls to $UNI QUE_NUM (no arguments) returns
[17 27 37 o]

Evaluation occurs as part of the demodulation process. In particular, if demodulation

comes across an evaluable term, say $SUM 2, 3) , it tries to convert the arguments into
the appropriate type (integers for $SUM); then if the arguments have the correct type, it
rewrites the term to the result of the operation, in this case, just as if the demodulator
$SUM 2, 3) =5 had been present. The evaluation mechanisms, along with ordinary de-
modulation, form a reasonably complete (although not particularly speedy or convenient)
equational programming subsystem.

36

Eval uation/demodulation can also occur, in a very particular way, during hyperresolu-
tion. (Recall that hyperresolution takes a clause, the nucleus, with some negative literals,
the conditions, and resolves each negative literal with a positive clause, producing a clause
with no negative literals)) Just as evaluation during demodulation can be thought of as
rewriting with an implicit demodulator, evaluation during hyperresolution can be thought
of resolving with the implicit positive unit clause $T (meaning “true”). The mechanism is
this: if hyperresolution encountersa negative literal that has an evaluabl e predicate symboal,
then it demodul ates the atom (the literal without the sign); if the result of the demodulation
is$T, then the literal is considered to have been resolved.

During hyperresolution, demodulation/evaluation is triggered by the presence of an
evaluable literal. In many cases, however, the user defines a Boolean function to trigger
the mechanism. Consider the following definition of list membership, written as demodu-
lators:

menber (x,[]) = $F.
nmenber (x, [y]| z]) = $IF($ID(x,y),
$T,
menber (x,y)).

Because the symbol menber is not evauable, the demodulation/eval uation mechanism
will not be activated; however, the unary evaluable predicate $TRUE can be used in the
following way to trigger demodulation/evaluation.

—Ly | --- | -$TRUE(nmenber (element, list)) | --- | —L, | M.

Evaluable functions and predicates are useful to implement forward-chaining rule-based
systems, for example, state-space search problems (Sec. 9.2).

Hyperresol ution operates on the conditions (negative literals) in order, left to right. (The
preceding sentence is hot quite true because thefirst stepistypically resolution of a positive
given clause with any one of the conditions, but for this paragraph, we may assumethat itis
true.) If aliteral resolvesor evaluates, the next literal is considered. If nothing more can be
done with aliteral, then hyperresol ution backtracks to the preceding literal in search of an
aternative. When a nucleus contains eval uabl e conditions, the order of the conditionsisim-
portant both for efficiency and for actually deriving hyperresolvents. Evaluable conditions
typicaly have variables that must be instantiated when nonevaluable literals are resolved.
If an evaluable literal istoo far to the left, its variables will not be sufficiently instantiated
when hyperresolution encountersiit, evaluation will fail, and possible paths to hyperresol-
vents will be blocked. If an evaluableliteral istoo far to the right, then hyperresolution can
explore many pathsthat are sureto fail.

Technical Note and Advice. The evaluable symbols are an add-on feature rather than an
integral part of OTTER. In particular, the objectsthat are manipulated (integers, bit strings,
etc.) in most cases are stored by OTTER as character strings rather than as the appropriate
datatype. To evaluateaterm, say $SUM 2, 3) , OTTER must find the strings™ 2" and " 3"

in a hash table, translate them to integers, add them, trandate the result to the string " 5" ,
then look up " 5", and possibly insert it into the hash table. This procedure is obviously
much slower than it needsto be. If a problem requires a hundred million evaluations, the
user should consider using something else, including writing a special-purpose C program.

37

Warning 1. The evaluable symbol s should not be thought of astheories“builtin” to OTTER.
Astheories, they are very incomplete, and OTTER uses them only in very constrained ways.

Warning 2. Ordinary resolution inference rules (e.g., bi nary_res, hyper_res,
ur _res) never apply to evaluableliterals.

9.1 Using More Natural Expressions for Evaluation

Writing complex evaluable expressions with $-symbols can be quite tedious. There-
fore, a feature was added that alows more natural expressions. The command
make_eval uabl e copiesthe evaluation propertiesfrom a$-symbol to any other symbol
of the same arity. The form of the command is

make_eval uabl e(any- synbol , eval uabl e- synbol) .
The symbolsin the command are given dummy arguments to specify the arity. The follow-
ing list contains typical examples for integer arithmetic (assuming the symbols on the left

are already known to beinfix).

make_eval uabl e(_+_, $SUM _,)).

make_eval uable(_-_, $DIFF(_,)).
make_eval uabl e(_>_, $GT(_,)).
make_eval uabl e(_>=_, $GE(_,)).

Warning 1. If a binary symbol that is recognized by paramodulation or demod-
ulation as an equality symbol is given evaluation properties, it will no longer be
recognized by paramodulation or demodulation. For example, if the command
make_eval uabl e(_=_, $EQ _,)) isissued, paramodulation and demodulation
will not recognize a=b as an equality. The convention isto use == for evaluation.

Warning 2. Thisis not an “alias’ mechanism; the symbols remain distinct for unification,
matching, and identity testing.

9.2 Evaluation Examples

Equational Programming. The evaluable functions and predicates enable the use of
equalitieswith demodulation as a general - purpose equational programming language. Here
are some examples.

ged(x,y) = % great est common di vi sor for nonnegative integers
$I F($EQ(x, 0),
yl
$I F($SEQ Y, 0),
X

$i F(SLT(x,y),
gcd(x, $DI FF(y, X)),
gcd(y, $DIFF(X,y))))) -

38

factorial (x) = % factorial for nonnegative integers
$I F($EQ(x, 0),
11
$PROD(x, factorial ($DIFF(x,1)))).

qui ck_sort([]) =11. % nai ve qui cksort
qui ck_sort ([x]y]) = append(quick_sort(le_list(x,y)),

[x] quick_sort(gt_list(x,y))]).
le_list([

_ z,[]) =11

le list(z,[x]y]) = $I F($LLE(x, z),
[x][le_list(z,y)],
le list(z,y)).

gt _list(z,[]) =11].

gt list(z,[x]y]) = $I F($LGT(x, z),
[x|gt_list(z,y)],
gt _list(z,y)).

A State-Space Search. Here is a complete OTTER input file for a simple state-space
search.

% We have a 3-gallon jug and a 4-gallon jug, both enpty,
% and a well. Qur goal is to have exactly 2 gallons in the
% 4-gallon jug. W can fill a jug fromthe well, enpty a
% jug onto the ground, and carefully pour water from one
% jug into the other.

%

%j(m n) is the state in which the 3-gallon jug contains
% m gal |l ons, and the 4-gallon jug contains n gallons.

set (hyper _res).

make_eval uabl e(_+_, $SUM _,)).
make_eval uable(_- _, $DIFF(_,)).
nmeke_eval uabl e(_<=_, $LE(_,_)).

)
make_eval uabl e(_>_, $GT(_,)).

list(usable).
Sj(x, y) 1 i3, y). %fill the 3-gallon jug

Sj(x, y) | j(0, y). %enpty the 3-gallon jug

Sj(x, y) | j(x, 4. %fill the 4-gallon jug

-j(x, y) | j(x, 0). %enpty the 4-gallon jug

(X, y) | -(x+y <= 4) | j(0, y+x). %small -> big; it fits
Sj(x, y) | -(x+y > 4) | j(x- (4-y),4). %small -> big, until full
(%, y) | o-(x+y <= 3) | j(x+y, 0). %big->smll; it fits
Sj(x, y) | -(x+ty > 3) | j(3,y- (3-x)). %big ->smll, until full
-j(x, 2). %goal state --- 4-gallon jug containing 2 gallons

end_of _|ist.
list(sos).

j (0, 0). %initial state --- both jugs enmpty
end_of _|ist.

39

10 Weighting

OTTER recognizesfour lists of weight templates. (See Sec. 5.4 for input of weight template
lists.)

wei ght _I'i st (pi ck_gi ven). Thislistisused for selection of given clauses from list
sos. When theweight of aclauseisprinted, itisthe pi ck_gi ven weight.

wei ght _I'i st (purge_gen). Thislistisused in conjunction with the max_wei ght
parameter to discard generated clauses.

wei ght _I'i st (pi ck_and_purge). In many cases, one can use the same weight-
ing strategy for both selecting given clauses and purging generated clauses. The
pi ck_and_pur ge list serves the purposes of both the pi ck_gi ven and the
purge_gen lists. If the pi ck_and_pur ge list is present, then neither the
pi ck_gi ven nor the pur ge_gen list may be present.

wei ght _I'ist(ternms). Thislistisfor calculating the weight of terms when using the
weight-lex-order (Sec. 8.1.1) to compare terms. This occurs when theflag | r po is
clear when orienting equality literals (Secs. 8.1.2 and 8.1.3).

10.1 Weighing Clauses and Literals
Theweight of a clauseis awaysthe sum of the weightsof itsliterals (excluding any answer

literals). The weight of a positiveliteral isthe weight of itsatom. The weight of a negative
literal isthe weight of its atom plusthe value of the neg_wei ght parameter (Sec. 6.2.5).

10.2 Weighing Atoms and Terms

Atoms and terms are weighed top-down. To weigh a given term, OTTER searches the ap-
propriate weight list (in the order input) for the first matching template. I1f amatch isfound,
then the subterms of the given term that match the integers in the template are weighed.
The weight of the given term is the sum of the products of each integer and the weight of

its corresponding subterm, plus the second argument of the weight template. For example,
the template

wei ght (f(9($(2)),$(-3)), -50).
matches the given term

f(a(h(a)),f(b,x)).
Let wt(t) be the weight of term or atom ¢. Then

wt(f(g(h(a)), f(b, x)))=2«wt(h(a))+(-3)*xwt(f (b, X))+(-50).

40

If a matching weight template is not found, then the weight of the given term is 1
plus the sum of the weights of the subterms. (See the flags at om wt _nmax_ar gs and
termw _max_args, Sec. 6.1.10, for overrides.) Note that this weighting scheme im-
plies that if no weight templates are present, the default weight of a term or atom is the
number of variable, constant, function, and predicate symbols (the symbol count).

Variables in weight templates are generic. A variable in a weight template will match
any variable, and only avariable, in the given term. Asaconsequence, it is never necessary
to use different variable names in a weight template. For example, wei ght (f (X, x), -
7) matchesthetermf (u, v), andwei ght (X, 32) matchesall variables.

Warning. The two occurrences of symbol f in the term f (f, x) are treated by
OTTER as different symbols because they have different arities. The weight template
wei ght (f, 0) appliesto the second occurrence but not to the first.

The default weight of an answer literal is 0, but templates can be used to assign weights
to answer literals. The parameter neg_wei ght never appliesto answer literals.

If one wishes to have a weight template containing a Skolem function or constant that
is generated by OTTER, one must first make a short trial run to find out how the formulas
are Skolemized, then return to the input file and insert the weight list containing the Skolem
symbol after the formulalists.

10.3 Containment Weight Templates

Term weighting has an additional feature that allows the user to specify terms that contain
particular terms. This is done with a unary function symbol $dot s(¢). If $dot s()
occursin aweight template, it will match any term that contains aterm that matchest. This
isvery useful for discarding “bad” clauses. Here ispart of an output file that illustratesthis
feature.

list(sos).

1 [1 p(f(g(g(g(g(gChCh(h(h(j(b)))))))))))).
2 [1 p(F(g(g(h(g(H(g(h(g(g(a(B)))))))))))).
3 [1 p(f3(g(h(a)),a(g(b)),h(h(c))))

end_of |ist.

wei ght _I i st (pick_given).

wei ght (f ($dots(j ($(5)))), 100).

wei ght (F($dot s(H($dot s(B)))), 1000) .

wei ght (f 3($dot s(a), $dot s(b), $dots(c)), 2000).
end_of _|ist.

======= end of input processing =======
—========== start of search ===========

given #1: (w=106) 1 [] p(f(g(g(g(g(g(h(h(h(h(j(b)))
given #2: (w=1001) 2 [] p(F(g(g(h(g(H(g(h(g(g(g(B))
given #3: (wt=2001) 3 [] p(f3(g(h(a)),g(g(b)),h(h(c)

~— — —

~— — —

~— — —
~— —
~— —
~— —
~— —
~— —
~— —
~

41

11 Answer Literals

The main use of answer literalsisto record, during a search for a refutation, instantiations
of variablesin input clauses. For example, if the theorem under consideration states that
an object exists, then the denia of the theorem contains a variable, and an answer literal
containing the variable can be appended to the denia. If a refutation is found, then the
empty clause has an answer literal that contains the object whose existence has just been
proved.

Any literal whose predicate symbol starts with $ans, $Ans, or $ANS is an answer
literal. Most routines—including the ones that count literals and decide whether a clause
is positive or negative—ignore any answer literals. The inference rules insert, into the
children, the appropriate instances of any answer literals in the parents. If factoring is
enabled, OTTER does attempt to factor answer literals.

12 The Passive List

Either clauses or formulascan beinputtolistpassi ve. After input, the passivelistisfixed
for therest of the run. Clausesin the passivelist are used for exactly two purposes. forward
subsumption and unit conflict. If forward subsumptionis enabled, a newly generated clause
will be deleted if it is subsumed by any clauseinusabl e, sos, or passi ve, and newly
kept unit clauses are checked for unit conflict against unit clauses in usabl e, sos, or
passi ve.

The passive list has been most useful for monitoring the progress of a search. Suppose
we are trying to prove a difficult theorem, we have some lemmas in mind, and we would
like to know whether OTTER has proved the lemmas. Then denials of the lemmas can be
placed in the passive list, and OTTER will report proofs if it proves any lemmas, but the
denials of the lemmas will not interfere with the search for the main theorem. (Recall that
an appropriate value must be assigned to max__pr oof s; otherwise OTTER will stop at the
first proof.)

13 Clause Attributes

Attributes can be attached to clauses. This feature was introduced at the same time as the
hints strategy (Sec. 14), and all of the current attributes are specifically for the hints strat-
egy. In case some future enhancements of OTTER will use attributes, the general attribute
mechanism is given here.

Each attribute is identified by a name, and each attribute has a type. (Users cannot
introduce new attributes—they are built into the code of OTTER.) The attribute types are
integer, string, and term. Attributes are attached to clauses with the operator “#”, and must
appear after al literals.

For example, if attribute al hastype integer, attribute a2 has type string, and attribute
a3 hastypeterm, then a user can write a clause with attributes as follows.

42

f(x,y)!'=f(x,2z) | y=z # al(23) # a2("left cancel") # a3(g(b)).

14 The Hints Strategy

The hintsstrategy can be used if the user hasa set of clausesthat might be relevant to finding
aproof. The clauses, called hints, do not necessarily hold in the theory being explored, and
they are not used for making inferences. Hints are used only as a heuristic for guiding the
search, in particular, in selecting the given clauses and in deciding whether to keep derived
clauses.

The main function of the hints strategy is to adjust the pick-given weight of clauses.
The user can specify, for example, that any derived clause that matches a hint should have
its pick-given weight reduced by 1000. In addition, the user can specify, with an attribute
on ahint, how that hint should be used to adjust the pick-given weight of clauses that match
the hint. Clauses can match hintsin several ways as specified by (ordinary) parameters and
by attributes on hints.

Because of the distinction between the pick-given and purge-gen weights of clauses,
and because the hints mechanism affects only the pick-given weight, several additional
flags exist. If a clause matching a hint is derived, one typicaly wants it to be kept so
that it can be selected as a given clause. However, the clause may be discarded by the
max_wei ght parameter. To address this problem, the flags keep_hi nt _subsuners
and keep_hi nt _equi val ent s say that the max_wei ght parameter should be ig-
nored for all clauses that match hints in those ways (details are in the following subsec-
tions).

The hints strategy was introduced by Bob Veroff, who implemented it in a previous ver-
sionof OTTER and used it in many applications[27, 28]. OTTER currently hastwo separate
hints mechanisms, named “hints’ and “hints2”, both derived from Veroff’s methods and
ideas. Thefirst is more general, and the second is much faster.

14.1 Hints (the General Version)

The hint clauses are given in one or more lists. All of the lists must be named “hints’ asin
the following example.

[ist(hints).
-p(x) | a(x) | r(x).

end_of _|ist.
A clause C' can match ahint H in three ways.

1. C subsumes H. Thisisreferred to as“bsub”, in analogy to back subsumption.

2. ('issubsumed by H. Thisisreferred to as “fsub”, in analogy to forward subsump-
tion.

3. C'isequivaentto H.

43

Six parameters and two flags determine the behavior of the hints mechanism.

assi gn(equi v_hi nt_wt, n) . Default oo, range[—oo..o0]. If n # oo, clausesthat are
equivalent to a hint receive a pick-given weight of n.

assi gn(equi v_hint_add_wt, n). Default O, range [—oc..oc]. Clauses that are
equivalent to a hint have n added to their ordinary pick-given weight.

assi gn(fsub_hi nt_wt, n). Default co, range [—oc..oc]. If n # oo, clausesthat are
subsumed by a hint receive a pick-given weight of n.

assi gn(fsub_hint _add_wt, n). Default 0, range [—oc..00]. Clauses that are sub-
sumed by a hint have » added to their ordinary pick-given weight.

assi gn(bsub_hi nt _wt, n). Default oo, range [—oc..00]. If n # oo, clauses that
subsume a hint receive a pick-given weight of n.

assi gn(bsub_hi nt _add_wt, n). Default 0, range [—oc..o0]. Clauses that subsume
ahint have » added to their ordinary pick-given weight.

A clause can match more than one hint, and a clause can match a hint in more than one
way, so the order of operationsisrelevant. The rules are as follows. (1) The first hint (as
given in the input file) that matches the clause is used. (2) Equivalenceis tested first, then
fsub, then bsub. (3) Within match type (e.g., bsub), both types of weight adjustment can be
applied (e.g., bsub_hi nt _wt andbsub_hi nt _ad_wt).

The hint-adjustment parameters can be overridden by attributes on individua hints.
(Thisfeature can be used, for example, if some hints are more important than others.) The
attribute names for hints correspond to the six parameters listed above. For example, if
the parameter bsub_hi nt _add_wt is set to -1000, that value can be overridden for a
particular hint by giving it an attribute as follows.

f(x,f(x, f(x,y)))=f(x,y) # bsub_hint_add_wt (-2000).

The following two flags were introduced because the hints mechanism adjusts the pick-
given weight of clauses and does not affect the purge-gen weight of clauses.

Flag keep_hi nt _subsumer s. Default clear. If thisflag is set, then the max_wei ght
parameter isignored for derived clauses that subsume any hints.

Flag keep_hi nt _equi val ents. Default clear. If this flag is set, then the
max_wei ght parameter isignored for derived clausesthat are equivaent to any hints.

Practical Advice. If one has a set of clauses that one wishes to use as hints, say from a
proof of arelated theorem, a good first attempt is to use the following settings.

assi gn(bsub_hi nt _add_wt, -1000).
set (keep_hi nt _subsuners).

If one has more than afew hints, and one wishesto use only the preceding settings, then we
recommend using hints2 (the fast version).

14.2 Hints2 (the Fast Version)

The general hints mechanism described in the preceding paragraphs can be very slow if
there are many hints, because each hint clause is tested until a match is found. The fast
hints mechanism uses indexing to find hints. To activate the fast hints mechanism, hint
clauses are placed in one or more lists named “hints2” as in the following example.

[ist(hints2).

-p(x) | a(x) | r(x).
end_of _|ist.

Only one type of matching can be used with hints2—a clause matches a hint if and only if
it subsumes the hint. Two parameters and two flags apply to hints2.

assi gn(bsub_hi nt _wt, n). Default oo, range [—oo..00]. If n # oo, clauses that
subsume a hint receive a pick-given weight of n.

assi gn(bsub_hi nt _add_wt, n) . Default 0, range [—oc..o0]. Clauses that subsume
ahint have » added to their ordinary pick-given weight.

Flag keep_hi nt _subsumer s. Default clear. If thisflag is set, then the max_wei ght
parameter isignored for derived clauses that subsume any hints.

Flag degr ade_hi nt s2. Default clear. If thisflag is set, Bob Veroff’s hint-degradation
strategy is applied. When ahint isfirst read, itsbsub_hi nt _add_wt isassociated with
it; this value can come from the parameter or from an attribute. The hint-degradation
strategy says that each time a hint is used to adjust the weight of a derived clause, its
bsub_hi nt _add_wt iscutinhalf. Assuming that it initially has alarge negative value,
this strategy makes a hint progressively lessimportant as it matches more derived clauses.
This strategy was introduced because (contrary to intuition) many different generalizations
of a hint can be derived.

14.3 Label Attributes on Hints

If ahint clause has alabel attribute, for example,
f(x,f(x,f(x,y)))=f(x,y) # label ("hint 32 from proof 12").
and if such ahint is used to adjust the pick-given weight of aclause C, thelabel isinherited

by C'. Thisfeature, which is useful for tracking the application of hints, appliesto both the
general and the fast hints mechanisms.

14.4 Generating Hints from Proofs

The main source for hintsis proofs of related theorems. (If the goal is to shorten a proof,
hints often come from proofs of the same theorem.)

Flagpri nt _proof _as_hi nts. Default clear. If thisflag is set, then whenever a proof
isfound, itis printed as a hintslist in aform that can be input to a subsequent OTTER job.

45

The proof that is printed contains more detail than the ordinary proofs printed by OTTER.
In particular, when the proof contains demodulation, clauses are printed for each rewrite
step of demodulation. Thisflag isindependent of the hints mechanism.

15 Interaction during the Search

OTTER hasaprimitiveinteractivefeature that allowsthe user to interrupt the search, modify
the options, and then continue the search. The interrupt is triggered in two ways: (1) with
OTTER running in the foreground, the user typesthe“interrupt” character (often DELETE or
control-C), or (2) if theparameteri nt er r upt _gi ven issetton, thesearchisinterrupted
after every n given clauses. When interrupted, OTTER immediately goesinto asimple loop
to read and execute commands. The accepted commands are listed in Table 8.

Table 8: Interaction Commands

hel p. Give simple help.
set (flag-name) . Set aflag.
cl ear (flag-name) . Clear aflag.
assi gn(param-name, value) . Assign avalueto a parameter.
st ats. Send statisticsto std. output and the terminal .
usabl e. Print list usabl e on the terminal.
S0S. Print list sos on the terminal.
denodul at ors. Print list denodul at or s ontheterminal.
passi ve. Print list passi ve ontheterminal.
fork. Fork and run the child process;
resume parent when child finishes.
conti nue. Continue the search.
kill. Send statisticsto standard output, and exit.

The following notes elaborate on the interactive feature.

e Theflagi nt eracti ve_gi ven (Sec. 6.1.1) can be useful with the interactive fea-
ture. For example, if one thinksthe search is going to fail, one can interrupt it, print
listsos, setthei nt er acti ve_gi ven flag, then continue, selecting given clauses
interactively.

e Thef or k command creates a separate copy, caled a child, of the entire OTTER pro-
cess. Immediately after the fork, the child is running (waiting for more commands),
and the original process, the parent, iswaiting for the child to finish. When the child
finishes, the parent resumes (waiting for more commands). Changes that the child
makes to the clause space, options, and so forth, are not reflected in the parent; when
the parent resumes, it is in exactly the same state as when the fork occurred. (The
timing statistics are not handled correctly in child processes; CPU times are from the
start of the current process; wall-clock timeis correct; other timingsare not reliable.)

e Theinteractiveroutineisan areawhere a user whoisalso aC programmer can easily
add features. For example, most of the ordinary input commands could be made
availablein the interactive mode.

46

e This kind of interaction can be disabled by using the command
clear(sigint_interact).

Warning. Do not interactively change any option that affects term or literal indexing.

16 Output and Exit Codes

OTTER sends most of its output to “standard output”, which is usualy redirected by the
user to a file; we just cal it the output file. The first part of the output file is an echo of
most of the input and some additional information, including identification numbers for
clauses and description of some input processing. Comments are not echoed to the output.
The second part of the output file reflects the search. Various print flags determine what
is output. Given clauses, generated clauses, kept clauses, and several messages about the
processing of generated and kept clauses can be printed. Both statistics from the parameter
report and proofs can aso be printed during the search. The final part of the output file
lists counts of various events (such as clauses given and clauses kept) and times for various
operations.

Whenever aclause is printed, it is printed with itsinteger identifier (ID) and ajustifica
tion list, which isenclosed in brackets. Examples:

4 [] -j(xy)]j(x,0).

13 [hyper, 11, 8, eval , denmod] j (3,1).

41 [31,denpd] p([a,b,b,c,c,c,d,e, f]).

14 [new_denod, 13] f(y,f(y,f(y,x)))=x.

71 [back_denod, 58, denod, 70, 14, 55, 11, 34, 11] e! =e.

12 [derod, 9] f(a,f(b,f(g(a),g(b))))!=e.

77 [binary,57.3,30.2] sm i -sl.

33,32 [para_from 26. 1.1, 15. 1. 1. 2, denpd, 21] g(x)=f(x,Xx).
36 [hyper, 31, 2, 26, 30, uni t _del, 19, 18, 20, 19] p(k, g(k)).

4 [factor_sinmp, factor_sinp]

P(x) | p($FL(x))| -a($f2(y))| -a(y)|p($c6).
199 [binary, 198.1,191.1, factor_sinp] q($ci14).

If thejustification list is empty, the clause was input. Otherwise, thefirst item in the justifi-
cation list isone of the following.

An inference rule. The clause was generated by an inference rule. The IDs of the par-
ents are listed after the inference rule with the given clause 1D listed first (unless
order_history is set).

A clause identifier. The clause was generated by thedenod_i nf rule.

new.denod. Theclauseisadynamically generated demodulator; it isacopy of the clause
whose ID islisted after new_denod.

back _denod. The clause was generated by back demodulating the clause whose ID is
listed after back _denod.

47

denod. The clause was generated by back demodulating an input clause.

f act or _si np. The clause was generated by factor-simplifying an input clause. For ex-
ample, p(x) | p(a) factor-simplifiestop(a) .

The sublist [denod, idy, idy, . . .] indicates demodulation with idy, ids, The sublist
[uni t _del ,idy,ids,...] indicates unit deletion with id,ids,.... The symbols eval
indicates that a literal was “resolved” by evaluation (Sec. 9) during hyperresolution. The
sublist [f act or si np,fact or _si np, .. .] indicates a sequence of factor-simplification
steps (Sec. 6.1.5).

In proofs, some clauses are printed with two (consecutive) IDs. In such a case, the
clauseis a dynamically generated demodulator, and the two I Ds refer to different copies of
the same clause: thefirst ID referstoits use for inference rules, and the second to its use as
a demodulator.

If the flag det ai | ed_hi st ory is set, then for the inference rules bi nary_r es,
para_from and para_i nt o, the positions of the unified literals or terms are listed
along with the parent IDs. For example, [bi nary, 57. 3, 30. 2] means that the third
literal of clause 57 was resolved with the second literal of clause 30. For paramodulation,
the“from” parentislistedas I D.:.57, where ¢ isthe literal number of the equality literal, and
7 (either 1 or 2) isthe number of the unified equality argument; the “into” parent is listed
asiD.i.ji.--- .5,, where ¢ is the litera number of the “into” term, and j4.--- ., isthe
position vector of the “into” term; for example, 400. 3. 1. 2 refersto the second argument
of the first argument of third literal of clause 400. If the flag para_al | is set, then the
paramodulation positionsare not listed.

When the flag sos_queue is set, the search is breadth first (level saturation), and
OTTER sends a message to the output file when given clauses start on a new level. (Input
clauses have level 0, and generated clauses have level one greater than the maximum of the
levels of the parents. Since clauses are given in the order in which they are retained, the
level of given clauses never decreases.)

Exit Codes. When OTTER stops running, it sends an exit code to the operating system,
giving the reason for termination. The codes are useful when another program or system
cals OTTER. Table9 liststhe exit codes. Note that we do not follow the UNIX convention
of returning zero for normal and nonzero for abnormal termination.

17 Controlling Memory

In many OTTER searches, the sos list accumulates many clausesthat never enter the search,
possibly wasting a lot of memory. The normal way to conserve memory is to put a max-
imum on the weight of kept clauses. It can be difficult, however, to find an appropriate
maximum. OTTER has a feature, enabled by the command set (control _nmenory),
that attemptsto automatically adjust the maximum.

The memory-control feature operates as follows. When one third of available memory
(max_memparameter) hasbeenfilled, OTTER assignsor reassignsamaximum weight. The

48

Table 9: Exit Codes
101 Input error(s)

102 Abnormal end (compile-timelimit or OTTER bug)
103 Proof(s) found (stopped by max_pr oof s)

104 sos list empty

105 max_gi ven parameter exceeded

106 max_seconds parameter exceeded

107 max_gen parameter exceeded

108 max_kept parameter exceeded

109 max_nemparameter exceeded

110 Operating system out of memory

111 Interactive exit

112 Memory error (probable OTTER bug)

113 A USR1 signal wasreceived

114 The splitting rule terminated with a possible model
115 max_| evel s parameter exceeded

new maximum, say n, is such that 5% of all clausesin sos have weight < n. From then
on, at every tenthiteration of the main loop, OTTER cal culates a prospective new maximum
n’ in the same way. If n’ < n, then the maximum isreset to n’. The values 1/3 and 5%
were determined by trial and error. Perhaps these values should be parameters.

Reducingmax_wei ght onthe Fly. 1nmany searches, the number of kept clausesgrows
much faster than the number of given clauses. In other words, the list sos isvery large,
and most of those clauses never participatein the search. To save memory, one can use the
max_wei ght parameter to discard many of the clauses that will (probably) never become
given clauses.

A few searches and proofs show a phenomenon we call the complexity hump. To get
a search started, one must use complex clauses; then one can continue the search using
simpler clauses. That is, the first few steps in the proof are complex, and the remaining
steps are simpler. If one needs to carefully conserve memory when a complexity hump is
present, one can usethe parameterschange_| i mit _after andnew_nax_wei ght to
change the value of max_wei ght after a specified number of given clauses.

assign(change_limt_after, n). Default O, range [0..00]. If n (the value) is
not O, this parameter has effect. After n given clauses have been used, the parameter
max_wei ght isautomatically reset to the value of the parameter new_nax_wei ght .

assi gn(new_max_wei ght, n) . Default oo, range [—oc..00]. See the description of
the preceding parameter.

Note that the memory-control feature (Sec. 17) can also address the complexity hump
phenomenon.

49

18 Autonomous Mode

If theflag aut o isset, OTTER will scan the input clausesfor some simple syntactic proper-
ties and decide on inference rules and a search strategy. We think of the autonomous mode
as providing a built-in metastrategy for selecting search strategies. The search strategy that
OTTER selects for a particular set of clauses is usually refutation complete (except for the
flag cont r ol _nenory), but the user should not expect it to be especially effective. It
will find proofs for many easy theorems, and even for casesin which it failsto find a proof,
it provides a reasonabl e starting point.

In the input file, the command set (aut 0) must occur before any input clauses, and
al input clauses must be in list usabl e; it is an error to place input clauses on any of
the other lists when in autonomous mode. OTTER will move some of the input clauses
to sos before starting the search. When OTTER processes the set (aut 0) command,
it alters some options, even before examining the input clauses. If the user wishes to
augment the autonomous mode by including some ordinary OTTER commands (includ-
ing overriding OTTER’s choices), the commands should be placed after set (aut o) and
beforel i st (usabl e) .

After I i st (usabl e) has been read, OTTER examines the input clauses for several
syntactic properties and decides which inference rules and strategies should be used, and
which clauses should be moved to sos. The user cannot override the decisionsthat OTTER
makes at this stage.

OTTER looks for the following syntactic properties of the set of input clauses: (1)
whether it is propositional, (2) whether it is Horn, (3) whether equality is present, (4)
whether equality axioms are present, and (5) the maximum number of literalsin a clause.
The program then considers six basic combinations of the properties: (1) propositional, (2)
equality inwhich al clausesare units, and (3-6) the four combinationsof {equality, Horn}.
To see precisely what OTTER does for these cases, the reader can set up and run some
simple experiments.

Please be aware that the autonomous mode reflects individual experience with OTTER,;
other users would certainly formulate different metastrategies. For example, one might
prefer UR-resolution to hyperresolution or in addition to hyperresolution in rich Horn or
nearly-Horn theories, and one might prefer to add few or no dynamic demodulators for
equality theories.

19 Fringe Features

This section describes features that are new, not well tested, and not well documented.
OTTER ishot asrobust when using these features, especially when more than fringefeatures
is being used.

50

19.1 Ancestor Subsumption

OTTER does not necessarily prefer short or smple proofs—it simply reports the proofs that
it finds. An optionancest or _subsune extendsthe concept of subsumption to include
the derivation history, so that if two clause occurrences are logically identical, the one with
fewer ancestorsis preferred. The motivationisto find short proofs.

Flag ancest or _subsune. Default clear. If thisflag is set, the notion of subsump-
tion (forward and back) is replaced with ancestor-subsumption. Clause €' ancestor-
subsumes clause D iff C' properly subsumes D or if ¢ and D are variants and
size(ancestorset(C')) < size(ancestorset(D)).

When setting ancest or _subsune, we strongly recommend not clearing the flag
back_subsune, because doing so can cause many occurrences of the same clause to be
retained and used as given clauses.

19.2 The Hot List

Thehot listisa strategy that can be used to emphasize particular clauses. It wasinvented by
Larry Wos in the context of paramodulation, and it has been extended to most of OTTER’S
inference rules. To use the strategy, the user simply inputs one or more clauses in the
special list named hot . Whenever a clause is generated and kept by OTTER’s ordinary
mechanisms, it isimmediately considered for inference with clausesin the hot list.

Which Clauses Should Be Hot? Clausesinputinthehot list are usually copiesof clauses
that occur aso in sos or usabl e. They are typically clauses that the user believes will
play akey role in the search for a proof, for example, specia hypotheses.

Managing Hot-List Clauses. Input to the hot list is the same as input to other lists and
can bein either clause or formulaform, for example,

l'ist(hot).
f(x,x) =x. mmx)) = X.

end_of _|ist.

Theflag pr ocess_i nput hasno effect on hot-list clauses; they are never altered during
input. Hot-list clauses are never deleted, for example by back subsumption or back de-
modulation. Even if a hot-list clause isidentical to a clause in another list, it has a unique
identifying number, and proofs that use hot-list clauses generally refer to two copies (with
different ID numbers) of those clauses.

Hot Inference Rules. Theinference rulesthat are applied to newly kept clauses and hot-
list clauses are the same as the rules in effect for ordinary inference, with the exceptions
denod_i nf, geonetric_rule, andlinked_ur_res, which are never applied to
hot-list clauses.

51

Applying Hot Inference. When hot inference is applied, the newly kept clause istreated
as the given clause, and the hot list is treated as the usable list. (Note that the newly kept
clauseisnot in the hot list, so it will not be considered for inference with itself, as happens
with the given clause in ordinary inference.) For inference rules such as hyperresolution or
UR-resolution that can use more than two parents, all of the other parents must be in the
hot list; thisgenerally means that the nucleus and other satellitesmust bein the hot list. Hot
inference isnot applied to clausesthat are “kept” during processing of the input.

Level of Hot Inference (Parameterheat). To prevent long sequences of hot inferences
(i.e., hot inference applied to a clause generated by hot inference, and so on) we consider
the heat level of hot inference. The heat level of an ordinary inference is 0, and the heat
level of ahotly inferred clause isone more than the heat level of the new-clause parent. The
parameter heat , default 1, range[0..100], isthe maximum heat level that will be generated.
When a clauseis printed, its heat level, if greater than 0, is also printed.

Dynamic Hot Clauses (Parameterdynam ¢ _heat wei ght). Clauses can be added
to the hot list during a search. If the pi ck_gi ven weight of a kept clause is less than
or equal to the parameter dynami ¢_heat _wei ght , default —oo, range [—oc..o¢], then
the clause will be added to the hot list and used for subsequent hot inference. Input clauses
that are “kept” during processing of the input are never made into dynamic hot clauses.
Dynamic hot clauses can be added to an empty hot list (i.e., no input hot list).

19.3 Sequent Notation for Clauses

Two flags enable the use of sequent notation for clauses.

Flag i nput _sequent . Default clear. If thisflag is set, clausesin the input file must be
in sequent notation.

Flag out put _sequent . Default clear. If thisflag is set, then sequent notation is used
when clauses are output.

Syntax:

e All sequent clauses have an arrow.

e The negative literals (if any) are written on the left side of the arrow, are written
without the negation sign, and are separated by commas.

e Thepositiveliterals(if any) arewritten on theright side of the arrow and are separated
by commas.

Table 10 lists some examples.

Notethat p, g- >r, s isordinarily thought of as (p and q) implies(r or s).

Sequent clauses are treated as (parsed as) a special case because they can't be made to
fit within OTTER’s ordinary syntax.

52

Table 10: Examples of Sequent Clauses

Ordinary Clause Sequent Clause
-p| -al -r| s| t|pqr->s,t
p(a, b, c) -> p(a, b, c)
al =b az=b ->

$F (the empty clause) ->

19.4 Conditional Demodulation

A conditional demodulator has the form
condition- > equality-literal.

Theequality isapplied asademodulator if and only if theinstantiated condition evaluatesto
$T. Theequality of aconditional demodulator isnot subjected on input to being flipped or to
being flagged as alex-dependent demodul ator, and conditional demodulatorsare never back
demodulated. In other ways, conditional demodulators behave as ordinary demodulators.
Examples are (menber and gcd are defined in Sec. 9.)

$ATOM C(x) -> conjunctive_normal _form x)=x.
nenber (ged(4, x),y) -> Equal (f(x,y), g(y)).
$GT($NEXT_CL_NUM 1000) -> e(x,x) = junk.

19.5 Debugging Searches and Demodulation

The flag very_ver bose causes too much output to be used with large searches. The
following parameters can turn on verbose output for a segment of the search.

assi gn(debug_first, n). Default O, range [0 ..00]. This parameter is consulted if
theflagvery_ver bose isset. Verbose output will begin when a clause is kept and given
an identifier of thisvalue.

assi gn(debug_first, n). Default -1, range[-1 ..co]. This parameter is consulted if
theflag very_ver bose isset. Verbose output will end when a clause is kept and given
an identifier of thisvalue.

assi gn(verbose_denod_ski p, n). Default O, range [0 ..o0]. This parameter is
consulted during demodulationif theflag ver y_ver bose is set. Verbose output will not
occur during thefirst » rewrites.

19.6 Special Unary Function Demodulation

A feature, activated by thespeci al _unar y command, allows OTTER to avoid one of the
problems caused by the lack of associative-commutative matching during demodulation.
The feature is useful when an associative-commutative function and an inverse are present,
asinrings. Without thisfeature, the following | ex command and demodulators

53

lex([0,a,b,c,d,e,g().f(_,)]).

i st(denodul ators).

f(x,y) = f(y,x).
f(x,f(y,2)) = f(y, f(x,2)).
f(x,9(x)) = 0.
f(x,f(g(x),y)) = f(0,y).
f(0,x) = x.

end_of _|ist.

will cause the expression

F(f(f(g(b),a),c),f(b,g(c)))

to be sorted into

f(a, f(b,f(c,f(g(b),g(c))))).

Onewouldlikeb and g(b) to benext to each other so that they could be canceled by one of
the inverse demodulators. The special-unary feature accomplishesjust that. The command

speci al _unary([g(x)])

causes g to be ignored during term comparisons, and the expression will be demodulated to
a. Thespeci al _unary command has no effect if theflag | r po isset. Thisisa highly
experimental feature. Its behavior has not been well analyzed.

19.7 The Invisible Argument

OTTER recognizes a built-in unary function symbol $I GNORE(_) . Forward subsumption
treats each term that starts with $I GNORE as the constant $1 GNORE, completely ignoring
its argument. For example, p(a, $| GNORE(b)) subsumes p(a, $I GNORE(c)) . All
other operations (in particular, inference rules, demodulation, and back subsumption) treat
$1 GNORE as an ordinary function symbol.

The purpose of $I GNORE isto record data about the derivation of a clause without hav-
ing that data prevent the forward subsumption of clauses that would be subsumed without
that data. The $1 GNORE term is the term analog of the answer literal. For example, one
can use $I GNORE terms in the jugs and water puzzle (Sec. 9.2) to record the sequence of
pourings that leads to each state.

19.8 Floating-Point Operations

Table 11 lists a set of floating-point evaluable functions and predicates that are analogous
to the integer arithmetic operations listed in Sec. 9. They operate in the same way as the
integer operations.

Table 11: Floating-Point Operations
float x float — float | $FSUM $FPROD, $FDI FF, $FDI V
float x float — bool | SFEQ $FNE, $FLT, $FLE, $FGT, $FGE

The floating-point constants, however, arealittle peculiar, both in the way they look and
in the way they behave. They are written as quoted strings, using either single or double
guotes. (Otherwise, they would not be able to contain decimal points.) Other than the
quotation marks, the form of the floating-point constants accepted by OTTER is exactly the
same as the form accepted by the C programming language (actually the C library used by
the compiler). Examplesare" 1. 2", " 10e6", " - 3. 333E- 5" . A floating-point constant
must contain either a decimal point or an exponent character e or E.

The peculiar behavior comes from the fact OTTER stores the floating point numbers
as character stringsinstead of directly as floating point numbers. To apply a floating-point
operation, OTTER startswith the operand strings, translatesthem to true fl oating-point num-
bers (the C data type “double’ is used), performs the operation, then translates the result
into a string so that it can be an OTTER constant. As well as being inefficient, this scheme
also has a problem with precision, because a fixed format is used to tranglate the results
back into strings. The default format is™ % 12f ", and it can be changed with a command
such as

float_format ("9%l7.8f")

Caution. OTTER does not check that the string in the f | oat _f or mat command is a
well-formed format specification. Thisisthe user’sresponsibility.

To fully understand how this works, see the standard C language reference [11, Ap-
pendix B]; inparticular, theC library functionssscanf andspri nt f areusedtotransate
to and from strings.

19.9 Foreign Evaluable Functions

OTTER provides a general mechanism through which one can create one's own evaluable
functions and predicates. The user (1) declares the function, its argument types, and its
result type, (2) insertsacall to thefunction in the OTTER source code, (3) writesa C routine
to implement the function, and (4) recompiles OTTER. The user must have a personal copy
of the source code to usethisfeature. See the source codefilef or ei gn. h for step-by-step
instructions, examples, templates, and test files.

Important note. Many times you can avoid having to do al of this by just writ-
ing your function with demodulators and using existing built-in functions. For ex-
ample, if you need the maximum of two doubles, you can just use the demodulator
float _max(x,y) = $IF($FGCT(x,y), X, Yy).

55

19.10 The Inference RuleyL for Cubic Curves

Based on work of R. Padmanabhan and others, anew inferencerule, ¢ . (“geometric Law”,
or “Local to globa”), was added to OTTER. The rule implements a local-to-global gener-
alization principle that has a geometric interpretation for cubic curves. The article [20] and
the monograph [18] contain descriptionsof the rule, some details about its implementation
in OTTER, and several new results obtained with its use.

Therule g I appliesto single positive unit equalities, and it isimplemented in two ways:
as an inference rule, with unification, and as a rewrite rule, for when the target terms are
aready identical.

Flag geonetri c_rul e. Default clear. When thisflag is set, ¢/ is applied as an
inference rule (along with any other inference rules that are set) to each given clause. The
rule g I, appliesto single positive unit equalities.

Flag geonetric_rewite_before. Default clear. When thisflag isset, gl is
applied as arewrite rule, before ordinary demodulation, to each generated clause.

Flag geonetric_rewite_after. Default clear. When thisflag is set, gL is
applied as arewrite rule, after ordinary demodulation, to each generated clause.

Flag gl _denod. Default clear. When this flag is set, ordinary demodulation is not
applied to any derived clauses. Instead, after a clause is kept, it is copied, and the copy is
demodulated and processed.

Our experience has shown that given two equalities of equal weight, one the result of
gL and the other not, the ¢ L result is usually more interesting. The following parameter
can give preference to ¢ I results.

assign(geo_given_ratio, n). Default 1, range[—1..00]. When this parameter is
not —1, it affects selection of the given clause in away similar to pi ck_gi ven_r ati o.
If the ratio is n, then for each n given clauses selected in the norma way by weight,
one given clause is selected because it is the lightest ¢/, result available in sos. If
pi ck_gi ven_rati o and geo_gi ven_r ati o are both in effect, then clashes are re-
solved infavor of geo_gi ven_rati o.

19.11 Linked UR-Resolution

OTTER has an inference rule, | i nked_ur _r es, that is an application of the linked in-
ference principle to UR-resolution. Linked inference rules can take much larger infer-
ence steps than the corresponding nonlinked rules, thereby avoiding the retention of many
clauses that correspond to low-level deduction steps which can interfere with the overall
proof search strategy.

We refer the reader to [29, 34, 26] for background on linked inference rules, and we fo-
cus here on specifying the constraints on linked UR-resolution for OTTER. The constraints
are specified by six flags, two parameters, and annotations on input clauses.

Linked UR Flags

56

Flag | i nked_ur _res. Default clear. If thisflag is set, linked UR-resolution is applied
to al given clauses.

Flagl i nked_ur _t r ace. Default clear. If thisflag is set, detailed information about the
linking processis sent to the outpuit file.

Flag | i nked_sub_uni t _usabl e. Default clear. If thisflag is set, intermediate unit
clauses are checked for subsumption against the usabl e list.

Flagl i nked_sub_uni t _sos. Default clear. If thisflag is set, intermediate unit clauses
are checked for subsumption against the sos list.

Flag | i nked_uni t _del . Default clear. If thisflag is set, unit deletion is applied to
intermediate clauses.

Flagl i nked_t arget _al | . Default clear. If thisflag is set, any literal can be atarget.

Linked UR Parameters

assi gn(max_ur _dept h, n) . Default 5, range [0 .. 100]. This parameter limits the
depth of linked UR-resolution. Note that the depth of ordinary UR-resolutionisO.

assi gn(max_ur _deducti on_si ze, n) . Default 20, range [0 .. 100]. This parame-
ter limits the size of linked UR-resolution inferences, that is, the number of corresponding
binary resolution steps. In other words, the size of a linked inference step is one less than
the number of clausesthat participate.

Linked UR Annotations

Each clause that participatesin a linked UR-resolution inference is classified as a nucleus
(the nonunit clause containing the target literal), alink (nonunit clauses all of whose literals
areresolved), or a satellite (unit clauses).

Input clauses can be annotated with special literals specifying the role(s) they can play
in linked UR inferences. The clause annotationsare as follows.

SNUCLEUS([list-of-literal-numbers]) — the clause (assumed to be nonunit) can be a
nucleus. The argument is alist of positive integers identifying the literals that can act as
targets.

$LINK([]) — the clause (assumed to be nonunit) can act as alink. The argument must
be the empty list.

$BOTH([list-of-literal-numbers]) — the clause (assumed to be nonunit) can be either a
nucleus or alink, and when it is used as a nucleus, the admissibletarget literalsare givenin
thelist.

$SATELLI TE([]) — theclause (assumed to be unit) can act asa satellite. The argument
must be the empty list.

For exampl e, the annotation on the following four-literal clause saysthat it can act asa
nucleus with the fourth literal as the target.

57

$NUCLEUS([4]) | -go | -P31 | -Q81 | R3_LDL_DS5.

Input clauses on the usabl e list must be annotated to participate in linked UR. Units on
thelist sos are assumed to be satellites and need not be annotated.

Most experiments with linked UR-resolution have been done under the following con-
straints. (1) Linked UR isthe only inference rule being used, (2) every input clause in the
usabl e listisannotated, and (3) every clauseinthesos listisaunit and is not annotated.
Linked UR seems to behave correctly under these constraints, but several problems have
been noticed with other initial conditions.

Acknowledgment. The linked UR-resolution rule was implemented by Nick Karonis,
with collaboration from Bob Veroff and Larry Wos.

19.12 Splitting

To address OTTER’s poor performance on many non-Horn problems, a splitting rule was
installed in OTTER (in November 1997). By “splitting” we mean that the search is divided
into two or more independent branches such that if each of the branchesisrefuted, then the
state before the split has been refuted. Splittingistypically recursive.

OTTER’s splitting implementation uses the uNix fork() system call, which crestes
copies of the state of the OTTER process. An additional hypothesisis asserted on the first
branch, and the first branch continues executing while the second branch waits. If the first
branch is refuted, the second branch starts running with its additional hypothesis. This
method avoids explicit backtracking.

Two splittingmethods are avail able: splittingon ground clauses, and splitting on ground
atoms. In both methods, the parameter spl i t _dept h can be used to limit the depth of
splitting. For example, with the command

assign(split_depth, 3).

acase such as[1.1.1.1] will not occur.

19.12.1 Splitting on Ground Clauses

Clause splitting can be triggered in two ways: either periodically or when a ground clause
is selected as the given clause. In both methods, the clauses on which splitting occurs can
be constrained by any of the following three flags (all clear by default).

set(split_pos). % split on positive clauses only

set(split_neg). % split on negative clauses only
set(split_nonhorn). %split on non-Horn clauses only

These flags determine eligibility. If none of the flags is set, all ground nonunit clauses are
eigible.

58

Splitting Periodically on Clauses. To enable the periodic splitting method, one uses the
following command.

set(split_clause).
The default period is every 5 given clauses. To change the period, say to 10 given clauses,
use the following command.

assign(split_given, 10).
Instead of splitting after some number of given clauses, one can split after some number of
seconds, say 4, with the following command.

assign(split_seconds, 4).
The clause on which to split can be selected from the set of eligible clauses in two ways.

The default method is to select thefirst, lightest (using the pick-given scale) eligible clause
from the sequence usabl e+sos. Instead, one can use the command

set (split_m n_nmax).

which says to use the following method to compare two eligible clauses. Prefer the clause
with the lighter heaviest literal (using the pick-given scale); if the heaviest literals have the
same weight, use the lighter clause; if the clauses have the same weight, use the first in
usabl e+sos.

Splitting When Given. To specify that clause splitting should be occur whenever an eli-
gible clause is selected as the given clause, one uses the following command.

set (split_when_given).
The Branches for Clause Splitting. If OTTER decidesto split on aclause, say Pl Q R,
the assumptionsfor the three cases are

Case 1. P

Case 2. -P & Q
Case 3. -P & -Q&R

One system fork occurs, and Case 1 executes. If it succeeds, a second fork occurs, and
Case 2 executes. If that succeeds, Case 3 executes. If any of the cases fails to produce a
refutation, the failureis propagated to the top, and the entire search fails.

59

19.12.2 Splitting on Atoms

To split on atoms, OTTER periodically selects a ground atom, say P, and considers two
branches, one with assertion P, and the other with - P. The following command specifies
splitting on atoms.

set(split_atom.

Theparametersspl it _gi ven andspl i t _seconds determine (just asfor clause split-
ting) when atom splitting occurs. If al input clauses are ground, and if the parameter
split_given isassigned 0, then the resulting procedure is essentially a (very slow)
Davis-Putnam-L oveland-L ogemann SAT procedure.

Anatom iséligiblefor splittingif it occurs in an eligible nonunit ground clause. Clause
eligibility isdetermined just asin the clause splitting case, that is, by theflagsspl i t _pos,
split_neg,andsplit_nonhorn.

All clausesin usabl e+sos are considered when deciding the best eligibleatom. The
default method select the lightest atom in the lightest clause (using the pick-given scale).
An optiona method for selecting an atom considers the number of occurrences of the atom.
The command

set (split_popular).

saysto prefer the atom that occurs in the greatest number of clauses.

Instead of having OTTER decide the atoms on which to split, the user can specify them
in the input file with a command such as

split_atons([P, a=b, R]).

which saysto split, in order, on those atoms. In this example, we get eight cases, and then
no more splitting occurs. The time at which the splitting occurs is determined, as above, by
the parametersspl it _gi ven andspl it _seconds.

19.12.3 More on Splitting

If OTTER failsto find a proof for a particular case (e.g., thelist sos empties or some limit
is reached), the whole attempt fails. If the search strategy is complete, then an empty sos
list indicates satisfiability, and the set of assumptionsintroduced by splitting give a partial
model. It isup to the user, however, to complete the model.

When OTTER finds a refutation by splitting, the output file does not contain an overall
proof. A proof isgiven for each leaf in the tree, and those proofs contain clauses such as

496 [264,split.1.1.1.1] nop(C D)!=nop(A A).

in which the justification indicates that a split occurred on clause 264, and this clause is
the assertion for case [1.1.1.1]. Other information about splitting is given in the output file,

60

for example, when a split occurs, the case numbers, the case assertions, and when forked
processed begin and end.

When splittingis enabled, the parameter max_seconds (for theinitial processand all
descendant processes) is checked against thewall clock (from the start of theinitial process)
instead of against the process clock. Thisis problematic if the computer is busy with other
processes.

OTTER’s splitting rule is highly experimental, and we do not have much experience
withit. A general strategy that may be useful for non-Horn problemsis the following.

set (split_when_given).
set(split_pos). % Also try it without this comrand.
assign(split_depth, 10).

The OTTER distribution packages should contain a directory of sample input files that use
the splitting rule.

Acknowledgment The splitting rule was developed in collaboration with Dale Myers,
Rusty Lusk, and Mohammed Almulla.

20 Soundness and Completeness

20.1 Soundness

OTTER hasa very good record with respect to soundness, but (as far as we know) no parts
of it (the C code) have been formally verified. If anything depends on proofs found by
OTTER, the proofs should be carefully checked, by hand or by an independent program.

The IVY project [19] contains a component that checks the proof objects (Sec. 6.1.8)
produced by OTTER. The main result of the IVY project is a hybrid system, constructed
in the ACL 2 verification environment [10], that takes a first-order conjecture, translates it
to clauses, sends the clauses to OTTER, and checks any proof objects that are returned.
ACL2 has been used to prove various soundness properties of the clause trandator, the
proof checker, and their composition as a hybrid system.

20.2 Completeness

If the clause set does not involve equality, or if it involves equality and includesthe equality
axioms, then many of the common refutation-complete resolution search strategies can be
easily achieved with OTTER. For example, hyperresolution and factoring, with positive
clausesinthelist sos and nonpositiveclausesinthe list usabl e, iscomplete. If the input
clause set isHorn, then factoring is not required. The default method of selecting the given
clause (take one with the fewest symbols) does not interfere with completeness, and neither
forward nor back subsumption, asimplemented in OTTER, interferes with compl eteness of
the basic inference rules.

61

Completeness issues are more complex when paramodulation is the inference rule, es-
pecialy when the set of support strategy is considered. A simple and compl ete paramodu-
lation strategy for OTTER is(1) paramodulate fromand into the given clause, (2) paramod-
ulate from and into both sides of equality literals, (3) paramodulate from (but not into)
variables, and (4) place dl input clausesinthelist sos. The equality x=x isrequired, but
the functionally reflexive axioms are not required.

Completeness of the basic inference rules is important, but incomplete restric-
tions and refinements are frequently required to find proofs. For example, we al-
most always use the nax_wei ght parameter; strictly speaking, it is incomplete, but
it saves a lot of time and memory, and careful use of it does not prevent OTTER from
finding proofs in practice. For paramodulation, we generally use the flag anl _eq
with additional restrictions—some are known to be incomplete, and others have not
been analyzed. We sometimes use UR-resolution on non-Horn sets, which is incom-
plete. And we make extensive use of weighting to purge uninteresting clauses and
the options del et e_i denti cal _nest ed_skol em max_di sti nct_vars, and
max_literal s, al of which interfere with completeness.

21 Limits, Abnormal Ends, and Fixes

OTTER has several compile-time limits. If a limit is exceeded, a message containing the
name of the limit will appear in the output file and/or at the terminal. To raise the limit, find
the appropriate definition (#def i ne) ina. h or. c file, increase the limit, and recompile
OTTER. (Of course, one must have one’s own copy of the source code to do this.) Some of
the limitsare asfollows.

MAX_NAME — Maximum number of charactersin a variable, constant, function, or predi-
cate symbol.

MAX_BUF — Maximum number of characters in an input string (clause, formula, com-
mand, weight template, etc.).

MAX_VARS — Maximum number of distinct variablesin a clause.

MAX_FS_TERM DEPTH— Maximum depth of termsinthe forward subsumption discrim-
ination tree.

MAX_AL_TERM DEPTH — Maximum depth of left-hand arguments of equalities in the
demodulation discrimination tree.

Conserving Memory. Several steps can be taken if OTTER isusing too much memory.

e Usemax_wei ght todiscard (more) generated clauses. Thisisavery effective way
to save memory (and time).

e Settheflagcont rol _nenory (Sec. 6.1.10), or use the parameters
change_l| i m t _after and new_nmax_wei ght (Sec. 17).

62

e Decrease (down to 0) the value of thef pa_l i teral s and f pa_t er ns parame-
ters.

e Setthef or _sub_f pa flagto switch forward subsumption indexing from discrimi-
nation tree to FPA indexing.

o If the inference rules being used are binary resolution or paramodulation, clear the
flagdet ai | ed_hi story.

e If a lot of back subsumption or back demodulation is expected, set the flag
real ly_del ete_cl auses (Sec. 6.1.10).

e If applicable, set no_f apl orno_fanl (Sec. 6.1.9).
o If back demodulationis being used, clear theflagi ndex_f or _back_denod.

e Runan OTTER job until memory runsout, collect interesting lemmas from the output
file, then rerun the job including the lemmas as input clauses. Repeat. (Thiscan bea
good strategy even when memory is not a problem.)

22 Obtaining and Installing OTTER

OTTER 3 is free, and there are no restrictions on copying or distribut-
ing it. The main means of distribution is from the OTTER Web site at
http://ww. nts. anl . gov/ AR/ otter/.

Once one has a copy of the OTTER 3 distribution directory, one should look at the file
README for instructionson installing and testing OTTER. On UNIX-like systems, OTTER
may have to be compiled. There may also be executable versions for Microsoft Windows
available on the OTTER Web site.

Acknowledgments

Much of my work over the past few years has been in collaboration with Larry Wos. To-
ward our goal of creating programs that are expert assistantsfor mathematicians, logicians,
engineers, and other scientists, we have worked together on many applicationsof automated
deduction, and that work has led to many of OTTER’s current features.

The basic design of the program, including the data structures and the use of index-
ing, descends mostly from theorem provers designed and implemented by Ross Overbeek.
The indexing mechanisms, which are in large part responsible for the performance of the
program, have benefited from discussionswith Overbeek, Mark Stickel, and Rusty Lusk.

For many years Bob Veroff has maintained his own versions of OTTER. Many of his
enhancements have been adopted for the official versions of OTTER.

The expert users of OTTER, including Larry Wos, Bob Veroff, John Kalman, Ken
Kunen, Art Quaife, Dale Myers, Johan Belinfante, Michael Beeson, Branden Fitelson, and
Zac Erngt, have tracked down bugs and suggested useful enhancements.

63

References

[1]

[2]

(3]

[4]
(]

6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

W. Bledsoe and D. Loveland, editors. Automated Theorem Proving: After 25 Years,
volume 29 of Contemporary Mathematics. AMS, 1984.

R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press,
New York, 1988.

C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, New York, 1973.

N. Dershowitz. Termination of rewriting. J. Symbolic Computation, 3:69-116, 1987.

C. A. R. Hoare and M. J. C. Gordon, editors. Mechanized Reasoning and Hardware
Design. Prentice Hall, 1992.

JS. Moore, editor. Special Issue on System Verification. J. Automated Reasoning,
5(4), 1989.

J.-P. Jouannaud, editor. Rewriting Techniques and Applications, Lecture Notes in
Computer Science, Vol. 202, Berlin, 1985. Springer-Verlag.

J. Kaman. Automated Reasoning with Otter. Rinton Press, Princeton, New Jersey,
2001.

D. Kapur and H. Zhang. RRL: Rewrite Rule Laboratory User’s Manual. Technical
Report 89-03, Department of Computer Science, University of 1owa, 1989.

M. Kaufmann, P. Manolios, and J Maoore. Computer-Aided Reasoning: An Approach.
Advancesin Formal Methods. Kluwer Academic, 2000.

B. Kernighan and D. Ritchie. The C Programming Language. Prentice Hall, second
edition edition, 1988.

D. Knuth and P. Bendix. Simple word problemsin universal algebras. InJ. Leech, ed-
itor, Computational Problemsin Abstract Algebras, pages 263—-297. Pergamon Press,
Oxford, 1970.

A. G. Kurosh. The Theory of Groups, volume 1. Chelsea, New York, 1956.

D. Loveland. Automated Theorem Proving: A Logical Basis. North-Holland, Amster-
dam, 1978.

E. Lusk and R. Overbeek. The Automated Reasoning System ITP. Tech. Report
ANL-84/27, Argonne National Laboratory, Argonne, IL, April 1984.

W. McCune. Skolem functionsand equality in automated deduction. In Proceedingsof
the Eighth National Conference on Artificial Intelligence, pages 246-251, Cambridge,
MA, 1990. MIT Press.

W. McCune. MACE 2.0 Reference Manual and Guide. Tech. Memo ANL/MCS-
TM-249, Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL, June 2001.

64

[18] W. McCune and R. Padmanabhan. Automated Deduction in Equational Logic and
Cubic Curves, volume 1095 of Lecture Notes in Computer Science (Al subseries).
Springer-Verlag, Berlin, 1996.

[19] W. McCune and O. Shumsky. 1VY: A preprocessor and proof checker for first-order
logic. In M. Kaufmann, P. Manolios, and J Moore, editors, Computer-Aided Reason-
ing: ACL2 Case Sudies, chapter 16. Kluwer Academic, 2000.

[20] R. Padmanabhan and W. McCune. Automated reasoning about cubic curves. Com-
putersand Mathematicswith Applications, 29(2):17-26, 1995.

[21] A. Quaife. Automated development of Tarski’'s geometry. J. Automated Reasoning,
5(1):97-118, 1989.

[22] A. Quaife. Automated Development of Fundamental Mathematical Theories. PhD
thesis, University of Californiaat Berkeley, 1990.

[23] J. Siekmann and G. Wrightson, editors. Automation of Reasoning: Classical Papers
on Computational Logic, volume 1 and 2. Springer-Verlag, Berlin, 1983.

[24] B. Smith. Reference Manual for the Environmental Theorem Prover: An Incarna-
tion of AURA. Tech. Report ANL-88-2, Argonne National Laboratory, Argonne, IL,
March 1988.

[25] G. Sutcliffeand C Suttner. The TPTP Problem Library for Automated Theorem Prov-
ing. http://ww. t ptp.org/.

[26] R. Veroff. An Algorithm for the Efficient Implementation of Linked UR-resolution.
Tech. Report CD92-17, Department of Computer Science, University of New Mexico,
1992.

[27] R. Veroff. Using hints to increase the effectiveness of an automated reasoning pro-
gram: Case studies. J. Automated Reasoning, 16(3):223-239, 1996.

[28] R. Veroff. Solving open questionsand other challenge problems using proof sketches.
J. Automated Reasoning, 27(2):157-174, 2001.

[29] R. Veroff and L. Wos. The linked inference principle, i: The formal treatment. J.
Automated Reasoning, 8(2):213-274, 1992.

[30] L. Wos. Automated Reasoning: 33 Basic Research Problems. Prentice-Hall, Engle-
wood Cliffs, NJ, 1988.

[31] L. Wos, R. Overbeek, E. Lusk, and J. Boyle. Automated Reasoning: Introduction and
Applications, 2nd edition. McGraw-Hill, New York, 1992.

[32] L. Wos, F. Pereira, R. Boyer, J Moore, W. Bledsoe, L. Henschen, B. Buchanan,
G. Wrightson, and C. Green. An overview of automated reasoning and related fields.
J. Automated Reasoning, 1(1):5-48, 1985.

[33] L.Wosand G. Pieper. A Fascinating Country in the World of Computing: Your Guide
to Automated Reasoning. World Scientific, Singapore, 1999.

65

[34] L. Wos, R. Veroff, B. Smith, and W. McCune. The linked inference principlell: The
user'sview. In R. Shostak, editor, Proceedings of the 7th International Conference on
Automated Deduction, Lecture Notes in Computer Science, Vol. 170, pages 316-332,
Berlin, 1984. Springer-Verlag.

66

